Conic Sections 12E

1 **a**
$$v^2 = 4x$$

$$2y\frac{dy}{dx} = 4$$
 so $\frac{dy}{dx} = \frac{2}{y}$

At (16, 8),
$$\frac{dy}{dx} = \frac{2}{8} = \frac{1}{4}$$

Tangent is:

$$y - 8 = \frac{1}{4}(x - 16)$$

$$4v - 32 = x - 16$$

$$0 = x - 4y - 16 + 32$$

$$x - 4y + 16 = 0$$

Therefore, the equation of the tangent is

$$x - 4y + 16 = 0$$

b
$$v^2 = 8x$$

$$2y\frac{dy}{dx} = 8$$
 so $\frac{dy}{dx} = \frac{4}{y}$

At
$$(4, 4\sqrt{2})$$
, $\frac{dy}{dx} = \frac{4}{4\sqrt{2}} = \frac{\sqrt{2}}{2}$

Tangent is:

$$y - 4\sqrt{2} = \frac{\sqrt{2}}{2}(x - 4)$$

$$2y - 8\sqrt{2} = \sqrt{2}(x-4)$$

$$2y - 8\sqrt{2} = \sqrt{2}(x - 4)$$
$$2y - 8\sqrt{2} = \sqrt{2}x - 4\sqrt{2}$$

$$0 = \sqrt{2}x - 2y - 4\sqrt{2} + 8\sqrt{2}$$

$$\sqrt{2}x - 2y + 4\sqrt{2} = 0$$

Therefore, the equation of the tangent is

$$\sqrt{2}x - 2y + 4\sqrt{2} = 0$$

$$\mathbf{c} \quad xy = 25 \Rightarrow y = 25x^{-1}$$

$$\frac{dy}{dx} = -25x^{-2} = -\frac{25}{x^2}$$

At
$$(5,5)$$
, $\frac{dy}{dx} = -\frac{25}{5^2} = -\frac{25}{25} = -1$

Tangent is:

$$y-5 = -1(x-5)$$

$$v - 5 = -x + 5$$

$$x + y - 5 - 5 = 0$$

$$x + v - 10 = 0$$

Equation of the tangent is x + y - 10 = 0

1 d
$$xy = 4 \Rightarrow y = 4x^{-1}$$

$$\frac{dy}{dx} = -4x^{-2} = -\frac{4}{x^2}$$

At
$$x = \frac{1}{2}$$
, $\frac{dy}{dx} = -\frac{4}{\left(\frac{1}{2}\right)^2} = -\frac{4}{\frac{1}{4}} = -16$

When
$$x = \frac{1}{2}$$
, $y = \frac{4}{\left(\frac{1}{2}\right)} = 8 \Longrightarrow \left(\frac{1}{2}, 8\right)$

Tangent at
$$\left(\frac{1}{2}, 8\right)$$
 is

$$y-8=-16\left(x-\frac{1}{2}\right)$$

$$y - 8 = -16x + 8$$

$$16x + y - 8 - 8 = 0$$

$$16x + v - 16 = 0$$

Therefore, the equation of the tangent is 16x + y - 16 = 0

$$v^2 = 7x$$

$$2y\frac{dy}{dx} = 7$$
 so $\frac{dy}{dx} = \frac{7}{2y}$

At
$$(7,-7)$$
, $\frac{dy}{dx} = \frac{7}{2(-7)} = -\frac{1}{2}$

Tangent is:

$$y+7=-\frac{1}{2}(x-7)$$

$$2y + 14 = -1(x - 7)$$

$$2v + 14 = -x + 7$$

$$x + 2y + 14 - 7 = 0$$

$$x + 2y + 7 = 0$$

Therefore, the equation of the tangent is x + 2y + 7 = 0

1 **f**
$$xy = 16 \Rightarrow y = 16x^{-1}$$

$$\frac{dy}{dx} = -16x^{-2} = -\frac{16}{x^2}$$

At
$$x = 2\sqrt{2}$$
, $\frac{dy}{dx} = -\frac{16}{(2\sqrt{2})^2} = -\frac{16}{8} = -2$

When
$$x = 2\sqrt{2}$$
,

$$y = \frac{16}{2\sqrt{2}} = \frac{8}{\sqrt{2}} = \frac{8\sqrt{2}}{\sqrt{2}\sqrt{2}} = 4\sqrt{2}$$

Hence, tangent at $(2\sqrt{2}, 4\sqrt{2})$ is:

$$y-4\sqrt{2}=-2(x-2\sqrt{2})$$

$$y - 4\sqrt{2} = -2x + 4\sqrt{2}$$

$$2x + y - 4\sqrt{2} - 4\sqrt{2} = 0$$

$$2x + y - 8\sqrt{2} = 0$$

Therefore, the equation of the tangent is $2x + v - 8\sqrt{2} = 0$

2 a Substituting y = 10 into $y^2 = 20x$ gives

$$(10)^2 = 20x \Rightarrow x = \frac{100}{20} = 5 \Rightarrow (5, 10)$$

Differentiating $y^2 = 20x$ implicitly gives

$$2y \frac{dy}{dx} = 20 \text{ so } \frac{dy}{dx} = \frac{10}{y}$$

At
$$(5,10)$$
, $\frac{dy}{dx} = \frac{10}{10} = 1$

Gradient of tangent at (5,10) is $m_T = 1$

So gradient of normal is $m_N = -1$

Normal is the line:

$$y-10=-1(x-5)$$

$$v - 10 = -x + 5$$

$$x + y - 10 - 5 = 0$$

$$x + y - 15 = 0$$

Therefore, the equation of the normal is x + y - 15 = 0

2 b
$$xy = 9 \Rightarrow y = 9x^{-1}$$

$$\frac{dy}{dx} = -9x^{-2} = -\frac{9}{x^2}$$

At
$$x = -\frac{3}{2}$$
,

$$\frac{dy}{dx} = -\frac{9}{\left(-\frac{3}{2}\right)^2} = -\frac{9}{\left(\frac{9}{4}\right)} = -\frac{36}{9} = -4$$

Gradient of tangent at $\left(-\frac{3}{2}, -6\right)$ is

$$m_T = -4$$

So gradient of normal is $m_N = \frac{-1}{-4} = \frac{1}{4}$

Normal is the line:

$$y+6=\frac{1}{4}\left(x+\frac{3}{2}\right)$$

$$4y + 24 = x + \frac{3}{2}$$

$$8y + 48 = 2x + 3$$

$$0 = 2x - 8y + 3 - 48$$

$$0 = 2x - 8y - 45$$

Therefore, the equation of the normal is 2x - 8y - 45 = 0

3 a $xy = 32 \Rightarrow y = 32x^{-1}$

$$\frac{dy}{dx} = -32x^{-2} = -\frac{32}{x^2}$$

At
$$A(-2, -16)$$
,

$$\frac{dy}{dx} = -\frac{32}{(-2)^2} = -\frac{32}{4} = -8$$

Gradient of tangent at

$$A(-2,-16)$$
 is $m_T = -8$

So gradient of normal at

$$A(-2,-16)$$
 is $m_N = \frac{-1}{-8} = \frac{1}{8}$

Normal is the line:

$$y+16=\frac{1}{8}(x+2)$$

$$8v + 128 = x + 2$$

$$0 = x - 8y + 2 - 128$$

$$0 = x - 8y - 126$$

The equation of the normal to H at A is x - 8y - 126 = 0

3 b Normal to *H* at *A*: x - 8y - 126 = 0 (1)

Hyperbola
$$H$$
: $xy = 32$ (2)

Rearranging (2) gives
$$y = \frac{32}{x}$$

Substituting this equation into (1) gives

$$x - 8\left(\frac{32}{x}\right) - 126 = 0$$

$$x - \left(\frac{256}{x}\right) - 126 = 0$$

$$x^2 - 256 - 126x = 0$$

$$x^2 - 126x - 256 = 0$$

$$(x-128)(x+2) = 0$$

$$x = 128 \text{ or } -2$$

At A, it is already known that x = -2So at B, x = 128

Substituting x = 128 into $y = \frac{32}{x}$ gives

$$y = \frac{32}{128} = \frac{1}{4}$$

Hence the coordinates of *B* are $\left(128, \frac{1}{4}\right)$

4 a The points P and Q have coordinates P(4,12) and Q(-8,-6)

Hence gradient of PQ,

$$m_{PQ} = \frac{-6 - 12}{-8 - 4} = \frac{-18}{-12} = \frac{3}{2}$$

Hence
$$PQ$$
 is $y-12 = \frac{3}{2}(x-4)$
 $2y-24 = 3(x-4)$
 $2y-24 = 3x-12$
 $0 = 3x-2y-12+24$
 $0 = 3x-2y+12$

The line
$$PQ$$
 has equation $3x - 2y + 12 = 0$

4 **b** From part **a**, the gradient of the chord $PQ ext{ is } \frac{3}{2}$

The normal to H at A is parallel to the chord PQ, implies that the gradient of the normal to H at A is $\frac{3}{2}$

It follows that the gradient of the tangent to *H* at *A* is

$$m_T = \frac{-1}{m_N} = \frac{-1}{\left(\frac{3}{2}\right)} = -\frac{2}{3}$$

Now

$$H: xy = 48 \Rightarrow y = 48x^{-1}$$

$$\frac{dy}{dx} = -48x^{-2} = -\frac{48}{x^2}$$

At A,

$$-\frac{2}{3} = \frac{\mathrm{d}y}{\mathrm{d}x}$$

$$-\frac{2}{3} = -\frac{48}{x^2}$$

$$\frac{48}{x^2} = \frac{2}{3}$$

$$2x^2 = 144$$

$$x^2 = 72$$

$$x = \pm \sqrt{72}$$

$$x = \pm 6\sqrt{2}$$

When
$$x = 6\sqrt{2} \Rightarrow$$

$$y = \frac{48}{6\sqrt{2}} = \frac{8}{\sqrt{2}} = \frac{8\sqrt{2}}{\sqrt{2}\sqrt{2}} = 4\sqrt{2}$$

When
$$x = -6\sqrt{2} \Rightarrow$$

$$y = \frac{48}{-6\sqrt{2}} = \frac{-8}{\sqrt{2}} = \frac{-8\sqrt{2}}{\sqrt{2}\sqrt{2}} = -4\sqrt{2}$$

Hence the possible exact coordinates of A are $(6\sqrt{2}, 4\sqrt{2})$ or $(-6\sqrt{2}, -4\sqrt{2})$

5 a Substituting x = 3 in the equation $y^2 = 27x$ gives $y^2 = 81$, so $y = \pm 9$ Therefore the coordinates are A(3, 9) and B(3, -9)

c i
$$y^2 = 27x$$

 $2y \frac{dy}{dx} = 27 \Rightarrow \frac{dy}{dx} = \frac{27}{2y}$
At A , $\frac{dy}{dx} = \frac{27}{2 \times 9} = \frac{27}{18} = \frac{3}{2}$
The equation of l_1 is therefore

$$\frac{y-9}{x-3} = \frac{3}{2}$$

$$2(y-9) = 3(x-3)$$

$$2y-18 = 3x-9$$

$$3x-2y+9=0$$

ii At B,
$$\frac{dy}{dx} = \frac{27}{2 \times (-9)} = -\frac{27}{18} = -\frac{3}{2}$$

The equation of l_2 is therefore:

$$\frac{y - (-9)}{x - 3} = -\frac{3}{2}$$
$$2(y + 9) = -3(x - 3)$$
$$2y + 18 = -3x + 9$$
$$3x + 2y + 9 = 0$$

6 a
$$xy = \sqrt{3}t \times \left(\frac{\sqrt{3}}{t}\right)$$

$$xy = \frac{3t}{t}$$

A Cartesian equation of *H* is xy = 3

b
$$xy = 3 \Rightarrow y = 3x^{-1}$$

$$\frac{dy}{dx} = -3x^{-2} = -\frac{3}{x^2}$$

At
$$x = 2\sqrt{3}$$
,

$$\frac{dy}{dx} = -\frac{3}{(2\sqrt{3})^2} = -\frac{3}{12} = -\frac{1}{4}$$

Gradient of tangent at *P* is $m_T = -\frac{1}{4}$

So gradient of normal at *P* is

$$m_N = \frac{-1}{\left(-\frac{1}{4}\right)} = 4$$

At
$$P$$
, $x = 2\sqrt{3}$

$$\therefore 2\sqrt{3} = \sqrt{3}t$$

$$\Rightarrow t = \frac{2\sqrt{3}}{\sqrt{3}} = 2$$

When
$$t = 2$$
, $y = \frac{\sqrt{3}}{2} \Rightarrow P\left(2\sqrt{3}, \frac{\sqrt{3}}{2}\right)$

Normal is the line:

$$y - \frac{\sqrt{3}}{2} = 4(x - 2\sqrt{3})$$

$$2y - \sqrt{3} = 8(x - 2\sqrt{3})$$

$$2y - \sqrt{3} = 8x - 16\sqrt{3}$$

$$0 = 8x - 2y - 16\sqrt{3} + \sqrt{3}$$

$$0 = 8x - 2y - 15\sqrt{3}$$

The equation of the normal to *H* at *P* is $8x - 2y - 15\sqrt{3} = 0$

6 c Normal to *H* at *P*:

$$8x - 2y - 15\sqrt{3} = 0 \qquad \textbf{(1)}$$

Hyperbola H:

$$xy = 3 \qquad (2)$$

Rearranging (2) gives $y = \frac{3}{x}$

Substituting this equation into (1) gives

$$8x - 2\left(\frac{3}{x}\right) - 15\sqrt{3} = 0$$

$$8x - \left(\frac{6}{x}\right) - 15\sqrt{3} = 0$$

$$8x^2 - 6 - 15\sqrt{3}x = 0$$

$$8x^2 - 15\sqrt{3}x - 6 = 0$$

At *P*, it is already known that $x = 2\sqrt{3}$, so $(x-2\sqrt{3})$ is a factor of this quadratic equation.

Hence,

$$(x-2\sqrt{3})(8x+\sqrt{3})=0$$

$$\therefore x = 2\sqrt{3} \qquad (at P)$$

or
$$x = -\frac{\sqrt{3}}{8}$$
 (at Q).

At
$$Q$$
, $x = -\frac{\sqrt{3}}{8}$

$$\therefore \frac{-\sqrt{3}}{8} = \sqrt{3}t$$

$$\Rightarrow t = \frac{-\sqrt{3}}{8\sqrt{3}} = -\frac{1}{8}$$

When
$$t = -\frac{1}{8}$$
, $y = \frac{\sqrt{3}}{\left(-\frac{1}{8}\right)} = -8\sqrt{3}$

$$\Rightarrow Q\left(-\frac{1}{8}\sqrt{3}, -8\sqrt{3}\right)$$

Hence the coordinates of Q are

$$\left(-\frac{1}{8}\sqrt{3}, -8\sqrt{3}\right)$$

7 **a** Substituting $x = 4t^2$ and y = 8t into

$$xy = 4$$
 gives

$$(4t^2)(8t) = 4$$

$$32t^3 = 4$$

$$t^3 = \frac{4}{32} = \frac{1}{8}$$

So
$$t = \sqrt[3]{\left(\frac{1}{8}\right)} = \frac{1}{2}$$

When
$$t = \frac{1}{2}$$
, $x = 4\left(\frac{1}{2}\right)^2 = 1$

When
$$t = \frac{1}{2}$$
, $y = 8\left(\frac{1}{2}\right) = 4$

Hence the value of t is $\frac{1}{2}$ and P has coordinates (1, 4)

b $xy = 4 \Rightarrow y = 4x^{-1}$

$$\frac{dy}{dx} = -4x^{-2} = -\frac{4}{x^2}$$

At
$$P(1, 4)$$
, $\frac{dy}{dx} = -\frac{4}{(1)^2} = -\frac{4}{1} = -4$

Gradient of tangent to H at

$$P(1,4)$$
 is $m_T = -4$

So gradient of normal to H at

$$P(1,4)$$
 is $m_N = \frac{-1}{-4} = \frac{1}{4}$

Hence, normal to H at P is the line:

$$y-4=\frac{1}{4}(x-1)$$

$$4y - 16 = x - 1$$

$$0 = x - 4y + 15$$

Normal meets *x*-axis at *N*:

$$y = 0 \Rightarrow 0 = x + 15$$

$$\Rightarrow x = -15$$

Coordinates of N are (-15, 0)

7 **c**
$$v^2 = 16x$$

$$2y \frac{dy}{dx} = 16 \text{ so } \frac{dy}{dx} = \frac{8}{y}$$

At
$$P(1,4)$$
, $\frac{dy}{dx} = \frac{8}{4} = 2$

Tangent to C at P is:

$$y-4=2(x-1)$$

$$y - 4 = 2x - 2$$

$$0 = 2x - y + 2$$

Tangent cuts x-axis at T:

$$y = 0 \Rightarrow 0 = 2x + 2$$

$$\Rightarrow x = -1$$

Coordinates of T are (-1,0)

d <fp1_2e _aw1>

From the diagram,

Area
$$\triangle NPT = \text{Area}(R+S) - \text{Area}(S)$$

$$=\frac{1}{2}(16)(4)-\frac{1}{2}(2)(4)$$

$$= 32 - 4$$

$$= 28$$

Therefore, Area $\triangle NPT = 28$