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Conic Sections 1 2G  
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 Since 2 4y ax= , it follows that 7a =   
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 From sketch the locus satisfies .SP XP=   

 Therefore, 2 2
.SP XP=    

  

 So, 2 2 2
( 2 5) ( 0) ( 2 5)x y x− + − = − −  
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 which simplifies to 2
8 5y x=   

  

 So, the locus of P has an equation of the form  

 2 4 ,y ax= where 2 5a =  

 

 

 

 

 

 

 

3 a  

   
       

  From sketch the locus satisfies SP = YP.

         

  Therefore, 2 2
.SP YP=     

 

  So, 2 2 2( 0) ( 2) ( 2)x y y− + − = − −  
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4 4
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+ − + = + +

− =
 

  which simplifies to 2 8x y=  and then 

21

8
y x=  

  So, the locus of P has an equation of the 

form 21 1
, where

8 8
y x k= =  

 

 b The focus and directrix of a parabola with 

equation 
2 4  are( , 0) and 0y ax a x a= + =   

  respectively.   

  Therefore it follows that the focus and 

directrix of a parabola with equation 
2 4x ay=  are (0, a)  

  and 0y a+ =  respectively.  

  So the focus has coordinates (0, 2) and the 

directrix has equation 2 0y + =  
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− + = +
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 So 2 4y ax=  

 

5 a Let X  be the point on the line 3 0x + =  

such that XP  is horizontal. 

  Then PS PX= , so 2 2
PS PX=  
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  So 12k =   

 

 b Substitute the point ( ),6 6Q x  into the  

  equation 2 12y x=  
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  The equation of SQ  is therefore  
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− −
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− −
  

  ( )2 6
3

5
y x= −  

  
2 6 6 6

5 5
y x= −  

 

 

 

 

 

 

 

5 c Solving 
2 6 6 6

5 5
y x= −  and   

2 12y x=  simultaneously: 
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  18x ≠  (as x = 18 at Q),  

  so 2 1 0x − =  and so 
1

2
x =   

  When 
1

2
x = , 

2 1
12 6

2
y

 = × = 
 

, 

  so 6y = −   

  The coordinate of R  is therefore

1
, 6

2
R
 − 
 

  

 

 d Area of the trapezium  

  ( )1

2
QRVW WQ VR VW= × + ×   
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 6 The rectangular hyperbola 2xy c=  has the  

  general point ,
c

P ct
t

 
 
 

  

  The coordinate of Q is therefore  

  ( ), ,
2

c
Q X Y Q ct

t

 =  
 

 

  So 

22

2 2 2

c c c
XY ct

t

  = = =   
   

  

  Therefore 
2

c
k =  
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7 a, b 

  Let ( ), 0A a  and ( )0,B b  be the points on 

  the coordinate axes. 
 

  The area of the triangle AOB  is 
2

ab
q= ,  

  where q  is a constant. 

 
  The midpoint of AB has coordinates  

  ,
2 2

a b 
 
 

  

 

  So the coordinates (x, y) of M will always 

satisfy 
2 2 4 2

a b ab q
xy = × = =   

  This is of the form 2xy c= , where 2

2

q
c =   

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 Challenge 

  Each crease-line l is a perpendicular  

  bisector between the point ( ),0S a  and a  

  point T on the line 0x a+ =  

 

  Let a general point T on the line 0x a+ =  

  have coordinate ( ),a Y−   

  The gradient of ST is 
0

2

Y Y

a a a

−
= −

− −
  

 

  The gradient of the perpendicular bisector  

  of ST is therefore 
2a

Y
  

 

  The midpoint M is ST is  

  
0

, 0,
2 2 2

a a Y Y
M M

− + +   =   
   

  

 

  The equation of the perpendicular 
bisector, l (i.e. the crease line), of ST is 

therefore 
2

2

ax Y
y

Y
= +   

 
  To find the point of intersection of l and 

2 4y ax= ,  

  solve 
2

2

ax Y
y

Y
= +  and 2 4y ax=  

simultaneously: 
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a x Y
ax ax

Y

a x Y axY axY

a x axY Y

 + = 
 

+ + =

+ + =

− + =

 

  

  The discriminant 2
' 4 'b ac−   

  ( ) ( )22 2 4
8 4 16aY a Y= − − × ×  

  2 4 2 4
64 64 0a Y a Y= − =   

  Therefore the crease line l only touches  
  the parabola once. 

  Therefore the crease line l is a tangent to  

  the parabola 2 4y ax=  


