Conic sections 2 3C

1

a
$$a^2 = 9$$
 $b^2 = 5$
 $b^2 = a^2(1-e^2) \Rightarrow \frac{5}{9} = 1-e^2$
 $\Rightarrow e^2 = \frac{4}{9}$ so $e = \frac{2}{3}$

b
$$a^2 = 16$$
 $b^2 = 9$
 $b^2 = a^2(1-e)^2 \Rightarrow \frac{9}{16} = 1-e^2$
 $\Rightarrow e^2 = \frac{7}{16}$ so $e = \frac{\sqrt{7}}{4}$

c
$$a^2 = 4$$
 $b^2 = 8$
Need to use $a^2 = b^2(1 - e^2)$ since $b > a$, so
the ellipse is \bigcirc shape.
 $\frac{4}{8} = 1 - e^2 \Longrightarrow e^2 = \frac{1}{2}$ so $e = \frac{1}{\sqrt{2}}$

2 a
$$a^2 = 4$$
 $b^2 = 3$
 $b^2 = a^2(1 - e^2) \Rightarrow \frac{3}{4} = 1 - e^2$
 $\Rightarrow e^2 = \frac{1}{4}$ so $e = \frac{1}{2}$
Foci are at $(\pm ae, 0) = (\pm 1, 0)$
Directrices are $x = \pm \frac{a}{e} \Rightarrow x = \pm 4$

b
$$a^2 = 16$$
 $b^2 = 7$
 $b^2 = a^2(1-e^2) \Rightarrow \frac{7}{16} = 1-e^2$
 $\Rightarrow e^2 = \frac{9}{16}$ so $e = \frac{3}{4}$
Foci are at $(\pm ae, 0) = (\pm 3, 0)$
Directrices are $x = \pm \frac{a}{e} \Rightarrow x = \pm \frac{16}{3}$

2 c
$$a^2 = 5, b^2 = 9$$

Since $b > a$, use
 $a^2 = b^2(1 - e^2) \Rightarrow \frac{5}{9} = 1 - e^2$
 $\Rightarrow e^2 = \frac{4}{9}$ so $e = \frac{2}{3}$
Foci are at $(0, \pm be)$, i.e. foci are $(0, \pm 2)$
Directrices are $y = \pm \frac{b}{e}$, i.e. $y = \pm \frac{9}{2}$

- 3 a Since the focus is on the *x*-axis and the directrix is parallel to the *y*-axis, we know that a > b. In fact, the major axis of the ellipse, on which the foci lie, has to be perpendicular to the directrix, so knowing that one focus is on the *x*-axis and that the directrix is perpendicular to it is enough to identify the major axis of the ellipse as lying on the *x*-axis.
 - **b** i The directrix is at x = 12, so $\frac{a}{a} = 12$

 $\Rightarrow a = 12e$ The focus is at (*ae*, 0), so *ae* = 3 $12e \times e = 3 \Rightarrow e^2 = \frac{1}{4}$ so $e = \frac{1}{2}$

ii Since
$$ae = 3$$
, $a = 6$
Using $b^2 = a^2(1 - e^2)$
 $b^2 = 36\left(1 - \frac{1}{4}\right) = 36 \times \frac{3}{4} = 27$
 $\Rightarrow b = 3\sqrt{3}$

Further Pure Mathematics 1

SolutionBank

- 4 a Since the directrix is parallel to the x-axis, and the focus is on the y-axis, we know that b > a.
 - **b** i The directrix is at y = 8, so $\frac{b}{e} = 8$ $\Rightarrow b = 8e$ The focus is at (0, be), so be = 2

$$8e \times e = 2 \Longrightarrow e^2 = \frac{1}{4}$$
 so $e = \frac{1}{2}$

ii Since be = 2, b = 4As b > a, use $a^2 = b^2(1-e^2)$ $a^2 = 16\left(1-\frac{1}{4}\right) = 16 \times \frac{3}{4} = 12$ $\Rightarrow a = 2\sqrt{3}$

5 c $\frac{x^2}{9} - \frac{y^2}{16} = 1 \Rightarrow a^2 = 9, b^2 = 16$ $b^2 = a^2(e^2 - 1) \Rightarrow \frac{16}{9} = e^2 - 1$ $\Rightarrow e^2 = \frac{25}{9}$ so $e = \frac{5}{3}$ 6 a $\frac{x^2}{4} - \frac{y^2}{8} = 1$ $a = 2, b = 2\sqrt{2}$ $b^2 = a^2(e^2 - 1) \Longrightarrow \frac{8}{4} = e^2 - 1$ $\Rightarrow e = \sqrt{3}$ Foci are at $(\pm 2\sqrt{3}, 0)$ Directrices are $x = \pm \frac{2}{\sqrt{2}}$ $\frac{x^2}{4} - \frac{y^2}{8} = 1$ 2√3 -2√3 1-2 2 **b** $\frac{x^2}{16} - \frac{y^2}{9} = 1$ a = 4, b = 3 $\Rightarrow 9 = 16(e^2 - 1) \Rightarrow e^2 = \frac{25}{16} \Rightarrow e = \frac{5}{4}$ Foci are at $(\pm 5, 0)$ Directrices are $x = \pm \frac{16}{5}$ $\frac{x^2}{16} - \frac{y^2}{9} = 1$ 0 4 -4

Further Pure Mathematics 1

SolutionBank

7 **a** The eccentricity, *e*, of a hyperbola is given by $b^2 = a^2(e^2 - 1)$

Rearranging, $e = \sqrt{1 + \frac{b^2}{a^2}}$

and the foci have coordinates $(\pm ae, 0)$ Then we just need to compute the eccentricity in each case, as follows:

i
$$e = \sqrt{1 + \frac{1}{24}} = \frac{5}{\sqrt{24}};$$

then $ae = \frac{5}{\sqrt{24}} \times \sqrt{24} = 5$
ii $e = \sqrt{1 + 24} = 5;$
then $ae = 5 \times 1 = 5$
iii $e = \sqrt{1 + \frac{9}{16}} = \frac{5}{4};$
then $ae = \frac{5}{4} \times 4 = 5$
iv $e = \sqrt{1 + \frac{16}{9}} = \frac{5}{3};$
then $ae = \frac{5}{3} \times 3 = 5$

Since for all four hyperbolas ae = 5, all have foci at (± 5 , 0)

b We have already found the values of the eccentricity: $\frac{5}{\sqrt{24}}$, 5, $\frac{5}{4}$ and $\frac{5}{3}$

8 Since a > b, the ellipse has its major axis along the *x*-axis. Let P be a point of intersection of the chord with the ellipse, with coordinates (x, y).

The focus (*ae*, 0) is on the chord, so x = ae. Substitute into the equation for the ellipse:

$$\frac{(ae)^2}{a^2} + \frac{y^2}{b^2} = 1$$
$$\Rightarrow y^2 = b^2(1 - e^2)$$

From the definition of eccentricity,

$$b^2 = a^2(1-e^2)$$
 so $e^2 = 1 - \frac{b^2}{a^2}$

Substituting for
$$e^2$$
 in the equation for *y*,

$$y^{2} = b^{2} \left(1 - 1 + \frac{b^{2}}{a^{2}} \right) \Longrightarrow y = \pm \frac{b^{2}}{a}$$

The length of the latus rectum is $2y - \frac{2b^{2}}{a}$

The length of the latus rectum is $2y = \frac{2b}{a}$

Further Pure Mathematics 1

SolutionBank

9 a Assume the foci are on the *x*-axis. The distance between the foci is 2ae = 16, so ae = 8

The distance between the directrices is

$$\frac{2a}{e} = 2$$

Substituting for *a* gives

$$25e^2 = 16 \Longrightarrow e = \frac{4}{5}$$

5

b The foci are on the *y*-axis, thus

$$b = \frac{8}{e} = 8 \times \frac{5}{4} = 10$$

and $a = \left(\sqrt{1 - \frac{16}{25}}\right) 10 = \frac{3}{5} \times 10 = 6$

Then the equation of the ellipse is 2^{2}

$$\frac{x^2}{36} + \frac{y^2}{100} = 1$$

- **10** Rewrite the equation of the ellipse by dividing both sides by 36
 - $\frac{x^2}{36} + \frac{y^2}{9} = 1$ so a = 6 and b = 3

Then the eccentricity of the ellipse is

$$e = \sqrt{1 - \frac{9}{36}} = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}$$

The points A and B have coordinates $(\pm ae, 0)$, so they are the foci of the ellipse. Using the focus and directrix definitions of an ellipse, for any point P with coordinates (x, y),

$$PA + PB = e\left(\frac{a}{e} + x\right) + e\left(\frac{a}{e} - x\right)$$
$$= 2a = 12$$

11

$$c^{2} = b^{2} + a^{2}e^{2}, \text{ but } b^{2} = a^{2}(1 - e^{2})$$
$$\Rightarrow c^{2} = a^{2} - a^{2}e^{2} + a^{2}e^{2} = a^{2}$$
$$\Rightarrow c = a$$
So $\cos \theta = \frac{ae}{a} = e$

If you use the result that SP + S'P = 2a then since S'P = SP it is clear SP = a

Hence $\cos \theta = \frac{ae}{a} = e$

а

$$\tan 30^\circ = \frac{1}{\sqrt{3}} = \frac{y}{2ae} = \frac{b\sqrt{1-e^2}}{2ae}$$

But
$$b^2 = a^2(1-e^2)$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{a\sqrt{1-e^2}\sqrt{1-e^2}}{2ae}$$

$$\Rightarrow \frac{2e}{\sqrt{3}} = 1-e^2$$

$$\Rightarrow e^2 + \frac{2}{\sqrt{3}}e^{-1} = 0$$

Completing the square,

$$e^{2} + \frac{2}{\sqrt{3}}e + \frac{1}{3} = 1 + \frac{1}{3}$$
$$\Rightarrow \left(e + \frac{1}{\sqrt{3}}\right)^{2} = 1 + \frac{1}{3} = \frac{4}{3}$$
$$\Rightarrow e + \frac{1}{\sqrt{3}} = \frac{2}{\sqrt{3}} \text{ so } e = \frac{1}{\sqrt{3}} \quad (e > 0)$$