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a*=5,b>=9
Since b > a, use

a’ =b2(l—ez):g=1—e2
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Foci are at (0, £ be), i.e. fociare (0,+2)
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Since the focus is on the x-axis and the
directrix is parallel to the y-axis, we know
that a > b. In fact, the major axis of the
ellipse, on which the foci lie, has to be
perpendicular to the directrix, so knowing
that one focus is on the x-axis and that the
directrix is perpendicular to it is enough to
identify the major axis of the ellipse as
lying on the x-axis.

i The directrix is at x = 12, so 412
e

=a=12e

The focus is at (ae, 0), so ae =3
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ii Sinceae=3,a=6
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4 a Since the directrix is parallel to the x-axis,
and the focus is on the y-axis, we know

b

5 a

b

that b > a.

i The directrix is at y = 8, so b =8
e

= b=28e
The focus is at (0, be), so be =2
Se><e=2:ez=l soe=l
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ii Sincebe=2,b=4
As b > a, use
a’=b’(1-¢")
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SolutionBank
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Foci are at (£3, 0)

) . 4
Directrices are x = J_rg
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The eccentricity, e, of a hyperbola is given
by b’ =a’(e* -1)

b2
Rearranging, e =,/1+ el

and the foci have coordinates (fae,0)

Then we just need to compute the
eccentricity in each case, as follows:

)

then ae = ><\/_ 5
\/_
ii e=1+24=5;

then ae=5x1=5

/ 9 5
i e= 1+—:—
16 4

then ae:%x4=5

. 16 5
v e=,/l1+—=—;
9 3

then ae:§x3=5

Since for all four hyperbolas ae = 5, all
have foci at (5, 0)

b We have already found the values of the
5, é and é
4

. 5
eccentricity: —,
Y \24 3

i

/

Since a > b, the ellipse has its major axis
along the x-axis. Let P be a point of
intersection of the chord with the ellipse,
with coordinates (x, ).

)

P(x, )
(ae, 0) _
!J/ x
The focus (ae, 0) is on the chord, so x = ae.
Substitute into the equation for the ellipse:

@) ¥,
a’ b2
=b’(1-¢%)

From the definition of eccentricity,

b2
b*=a*(1-¢*) so € —1—?

Substituting for e* in the equation for y,

2 2

y' =b’ (1 1+b—j:>y +b—

a a

. 2b°

The length of the latus rectum is 2y =—
a
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9 a Assume the foci are on the x-axis. The
distance between the foci is 2ae = 16,
so ae =8
The distance between the directrices is

2a_ s

e
Substituting for a gives

25¢6* :16:>e:%

b The foci are on the y-axis, thus

b=§=8><§=10
e 4

and a= 1—E 10=§><10=6
\/ 25 5

Then the equation of the ellipse is
2 2

x_+y_=1
36 100

10 Rewrite the equation of the ellipse by
dividing both sides by 36

2 2
XY 1soa=6andb=3
36 9

Then the eccentricity of the ellipse is

F \F 3
e=,1-—=,[—=—
36 4 2
The points 4 and B have coordinates

(£ae,0), so they are the foci of the ellipse.

Using the focus and directrix definitions of
an ellipse, for any point P with coordinates

(X, )

PA+PB=e(£+xj+e(£—xj
e e

=2a=12
11 yn

2 = b|P
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SolutionBank

c=b>+a’e’,but b’ =a’*(1-¢€*)
=c’=a’-a’e+a’e’=a’
=>c=a
ae

So cos@=—=¢e
a

If you use the result that SP + S'P = 2a then
since S'P = SP it is clear SP=a

ae
Hence cos@=—=¢
a
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PS is y where aaz +z—2=l
Y =p(1=¢)
y=bJl-¢
SS' =2ae

y _bil-e

1
\/5 2ae 2ae

tan30° =

But b* =a’(1-¢%)

1 a1—e*J1-¢*
—

\/5 2ae
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=e +—e—-1=0
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Completing the square,
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