Conic sections 2 3D

1 $x = a\cos\theta, y = b\sin\theta$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{b\cos\theta}{a\sin\theta}$$

So tangent is

$$y - b\sin\theta = -\frac{b\cos\theta}{a\sin\theta}(x - a\cos\theta)$$

Equation of tangent is $bx \cos \theta + ay \sin \theta = ab$

Normal gradient is
$$\frac{a \sin \theta}{b \cos \theta}$$

So normal is
$$y - b \sin \theta = \frac{a \sin \theta}{b \cos \theta} (x - a \cos \theta)$$

Equation of normal is:

 $ax \sin \theta - by \cos \theta = (a^2 - b^2) \sin \theta \cos \theta$

a a = 2, b = 1

So equation of tangent is:

$$x\cos\theta + 2y\sin\theta = 2$$

Equation of normal is:

 $2x\sin\theta - y\cos\theta = 3\sin\theta\cos\theta$

b
$$\frac{x^2}{25} + \frac{y^2}{9} = 1 \Rightarrow a = 5, b = 3$$

So equation of tangent is:

 $3x\cos\theta + 5y\sin\theta = 15$

Equation of normal is:

 $5x\sin\theta - 3y\cos\theta = 16\sin\theta\cos\theta$

2 a $\frac{x^2}{9} + y^2 = 1 \Rightarrow \frac{2x}{9} + 2y \frac{dy}{dx} = 0$ $\therefore \frac{dy}{dx} = -\frac{x}{9y} \text{ so at } \left(\sqrt{5}, \frac{2}{3}\right) m = -\frac{\sqrt{5}}{6}$

Tangent at

$$\left(\sqrt{5}, \frac{2}{3}\right)$$
 is $y - \frac{2}{3} = -\frac{\sqrt{5}}{6}(x - \sqrt{5})$

$$\Rightarrow$$
 6 $y + \sqrt{5}x = 9$

Normal at

$$\left(\sqrt{5}, \frac{2}{3}\right)$$
 is $y - \frac{2}{3} = \frac{6}{\sqrt{5}}(x - \sqrt{5})$

$$3\sqrt{5}y - 2\sqrt{5} = 18x - 18\sqrt{5}$$

$$\Rightarrow 3\sqrt{5}y = 18x - 16\sqrt{5}$$

2 **b**
$$\frac{x^2}{16} + \frac{y^2}{4} = 1 \Rightarrow \frac{x}{8} + \frac{y}{2} \frac{dy}{dx} = 0$$

 $\therefore \frac{dy}{dx} = -\frac{x}{4y} \text{ so at } (-2, \sqrt{3}) \ m = \frac{1}{2\sqrt{3}}$
Tangent at $(-2, \sqrt{3}) \text{ is } y - \sqrt{3} = \frac{1}{2\sqrt{3}} (x - (-2))$
 $\Rightarrow 2\sqrt{3}y - x = 8$

Normal at

$$(-2, \sqrt{3})$$
 is $y - \sqrt{3} = -2\sqrt{3}(x - (-2))$
 $\Rightarrow y + 2\sqrt{3}x = -3\sqrt{3}$

3 Use the chain rule to find the gradient:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{b\cos t}{-a\sin t}$$

Then the equation of the tangent is given by

$$(y - b\sin t) = -\frac{b\cos t}{a\sin t}(x - a\cos t)$$

$$ay \sin t - ab \sin^2 t = -bx \cos t + ab \cos^2 t$$
$$bx \cos t + ay \sin t = ab$$

4 a Using the method in Example 13, substitute for *y* in the equation of the ellipse.

$$\frac{x^2}{4} + y^2 = 1 \Rightarrow \frac{x^2}{4} + (x + \sqrt{5})^2 = 1$$
So $x^2 + 4(x^2 + 2\sqrt{5}x + 5) = 4$

$$5x^2 + 8\sqrt{5}x + 16 = 0$$

This has discriminant:

$$\left(8\sqrt{5}\right)^2 - 4 \times 5 \times 16 = 0$$

So the line meets the ellipse at only one point and therefore is a tangent to the ellipse.

4 b To find the point of contact, solve the equation from part **a** for *x*:

$$5x^2 + 8\sqrt{5}x + 16 = 0$$

$$(\sqrt{5}x+4)^2=0$$

$$\Rightarrow x = -\frac{4}{\sqrt{5}} = -\frac{4}{5}\sqrt{5}$$

$$\Rightarrow y = -\frac{4}{5}\sqrt{5} + \sqrt{5} = \frac{1}{5}\sqrt{5}$$

So the point of contact is $\left(-\frac{4}{5}\sqrt{5}, \frac{1}{5}\sqrt{5}\right)$

5 **a** $x = 3\cos\theta, y = 2\sin\theta \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2\cos\theta}{-3\sin\theta}$

So gradient of normal is $\frac{3\sin\theta}{2\cos\theta}$

Equation of normal is:

$$y - 2\sin\theta = \frac{3\sin\theta}{2\cos\theta}(x - 3\cos\theta)$$

$$2y\cos\theta - 4\cos\theta\sin\theta$$

$$=3x\sin\theta-9\sin\theta\cos\theta$$

$$2y\cos\theta - 3x\sin\theta$$

$$=-5\sin\theta\cos\theta$$

5 b Normal at *P* crosses the *x*-axis at

$$y = 0, x = -\frac{5}{6}$$

Substituting into the equation for the normal from part **a**:

$$\frac{15}{6}\sin\theta = -5\sin\theta\cos\theta$$

$$\Rightarrow \sin\theta \left(\frac{1}{2} + \cos\theta\right) = 0$$

$$\Rightarrow \sin \theta = 0 \text{ or } \cos \theta = -\frac{1}{2}$$

 $\sin \theta = 0$ gives $\theta = 0^{\circ}$ or 180°

$$\cos \theta = -\frac{1}{2}$$
 gives $\theta = 120^{\circ}$ or 240°

$$\theta = 0^{\circ} \Rightarrow x = 3, y = 0$$

$$\theta = 180^{\circ} \Rightarrow x = -3, y = 0$$

$$\theta = 120^{\circ} \Rightarrow x = \frac{3}{2}, y = \sqrt{3}$$

$$\theta = 240^{\circ} \Rightarrow x = -\frac{3}{2}, y = -\sqrt{3}$$

So the coordinates of other possible positions of *P* are

$$(3,0), (-3,0)\left(-\frac{3}{2},\sqrt{3}\right) \text{ or } \left(-\frac{3}{2},-\sqrt{3}\right)$$

6 y = mx + c is a tangent to $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

if
$$a^2m^2 + b^2 = c^2$$

$$y = 2x + c \Rightarrow m = 2, c = ?$$

$$x^2 + \frac{y^2}{4} = 1 \Longrightarrow a = 1, b = 2$$

$$a^2m^2 + b^2 = c^2 \Longrightarrow 1 \times 4 + 4 = c^2$$

$$c^2 = 8$$
 so $c = \pm 2\sqrt{2}$

7 Substitute y = mx + 3 into the equation for the ellipse.

$$x^2 + \frac{(mx+3)^2}{5} = 1$$

$$5x^2 + (mx + 3)^2 = 5$$

$$(5+m^2)x^2 + 6mx + 4 = 0$$

Since the line is a tangent the discriminant of this equation must equal zero (must have equal roots).

So
$$36m^2 = 4 \times (5 + m^2) \times 4 = 80 + 16m^2$$

$$20m^2 = 80$$

$$m^2 = 4$$

$$\therefore$$
 $m = \pm 2$

The $a^2m^2 + b^2 = c^2$ condition could

be used as in question 6.

8 a y = mx + 4, $\frac{x^2}{3} + \frac{y^2}{4} = 1$

$$\Rightarrow c = 4, a^2 = 3, b^2 = 4$$

Using the condition $a^2m^2 + b^2 = c^2$:

$$a^2m^2 + b^2 = c^2$$

$$\Rightarrow 3m^2 + 4 = 16$$

$$3m^2=12$$

$$m = \pm 2$$

But m > 0, so m = 2

b $y = 2x + 4, \frac{x^2}{3} + \frac{y^2}{4} = 1$

Substitute into the equation for the ellipse:

$$\frac{x^2}{3} + \frac{(4x^2 + 16x + 16)}{4} = 1$$

$$\Rightarrow x^2 + 3x^2 + 12x + 12 = 3$$
$$4x^2 + 12x + 9 = 0$$

$$x^{-1}12x^{-1}y = 0$$

$$(2x+3)^2=0$$

$$x = -\frac{3}{2}$$
, $y = 2x + 4 = 1$

So *P* is
$$(-\frac{3}{2}, 1)$$

8 c Gradient of normal is $-\frac{1}{2}$

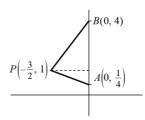
Equation of normal at *P* is

$$y-1 = -\frac{1}{2} \left(x - \left(-\frac{3}{2} \right) \right)$$

$$x = 0 \Rightarrow y = 1 - \frac{3}{4} = \frac{1}{4}$$

So *A* is $(0, \frac{1}{4})$

d Tangent is y = 2x + 4, $x = 0 \Rightarrow y = 4$



So *B* is (0, 4)

Area of $\triangle APB = \frac{1}{2} \left(4 - \frac{1}{4} \right) \times \frac{3}{2}$ $= \frac{1}{2} \times \frac{15}{4} \times \frac{3}{2} = \frac{45}{16}$

- 9 a $\frac{dy}{d\theta} = 2\cos\theta$, $\frac{dx}{d\theta} = -3\sin\theta$ $\frac{dy}{dx} = \frac{2\cos\theta}{-3\sin\theta} = -\frac{2}{3}\cot\theta$
 - **b** $\frac{\left(\frac{9}{5}\right)^2}{9} + \frac{\left(\frac{-8}{5}\right)^2}{4} = \frac{9}{25} + \frac{16}{25} = 1 = \text{RHS}$ So $Q\left(\frac{9}{5}, -\frac{8}{5}\right)$ lies on E
 - c Let Q be the point $(3\cos\phi, 2\sin\phi)$ Using the coordinates of Q:

$$\frac{9}{5} = 3\cos\phi \Rightarrow \cos\phi = \frac{3}{5}$$

$$-\frac{8}{5} = 2\sin\phi \Rightarrow \sin\phi = -\frac{4}{5}$$

So
$$\cot \phi = -\frac{3}{4}$$

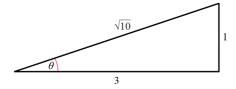
Gradient of tangent at Q is

$$-\frac{2}{3}\cot\phi = -\frac{2}{3} \times -\frac{3}{4} = \frac{1}{2}$$

9 d Tangent at P is perpendicular to tangent at Q, so gradient of tangent at P = -2

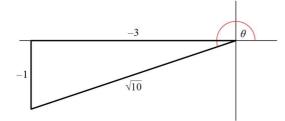
$$-2 = -\frac{2}{3}\cot\theta \Rightarrow \tan\theta = \frac{1}{3}$$

So P is
$$\left(\frac{9}{\sqrt{10}}, \frac{2}{\sqrt{10}}\right)$$



or

$$P$$
 is $\left(-\frac{9}{\sqrt{10}}, -\frac{2}{\sqrt{10}}\right)$



10
$$y = mx + c$$
 and $\frac{x^2}{9} + \frac{y^2}{46} = 1$

$$\Rightarrow a^2 = 9, b^2 = 46$$

$$\therefore b^2 + a^2 m^2 = c^2 \implies 46 + 9m^2 = c^2$$
 (1)

$$y = mx + c$$
 and $\frac{x^2}{25} + \frac{y^2}{14} = 1 \Rightarrow a^2 = 25, b^2 = 14$

$$\therefore b^2 + a^2 m^2 = c^2 \Rightarrow 14 + 25 m^2 = c^2$$
 (2)

$$(1)-(2) \Rightarrow 32-16m^2=0$$

$$\Rightarrow m^2 = 2$$

$$\therefore m = \pm \sqrt{2}$$

$$m^2 = 2$$
 and $14 + 25m^2 = c^2 \implies c^2 = 64$

$$\therefore c = \pm 8$$

So
$$m = \pm \sqrt{2}$$
, $c = \pm 8$

11 Use the chain rule to find the gradient of the tangent:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{4\cos\theta}{-8\sin\theta} = -\frac{\cos\theta}{2\sin\theta}$$

The equation of the tangent l_1 is given by

$$y - 4\sin\theta = -\frac{\cos\theta}{2\sin\theta}(x - 8\cos\theta)$$

$$2y\sin\theta - 8\sin^2\theta = -x\cos\theta + 8\cos^2\theta$$

Equation of the tangent is $x \cos \theta + 2y \sin \theta = 8$

Gradient of the normal l_2 is $\frac{2\sin\theta}{\cos\theta}$ and its

equation is

$$y - 4\sin\theta = \frac{2\sin\theta}{\cos\theta}(x - 8\cos\theta)$$

$$y\cos\theta - 4\sin\theta\cos\theta = 2x\sin\theta - 16\sin\theta\cos\theta$$

Equation of the normal is: $2x \sin \theta - y \cos \theta = 12 \sin \theta \cos \theta$

Line l_1 cuts the x-axis at A, so y = 0: $x \cos \theta = 8$ so $x = 8 \sec \theta$ A is the point $(8 \sec \theta, 0)$

Line l_2 cuts the y-axis at B, so x = 0: $-y \cos \theta = 12 \sin \theta \cos \theta$ so $y = -12 \sin \theta$ B is the point $(0, -12 \sin \theta)$

Now find the equation of the line AB.

$$\frac{y-0}{x-8\sec\theta} = \frac{0-(-12\sin\theta)}{8\sec\theta-0}$$

$$\frac{y}{12\sin\theta} = \frac{x - 8\sec\theta}{8\sec\theta}$$

$$2y\sec\theta = 3x\sin\theta - 24\sec\theta\sin\theta$$

$$3x\sin\theta - 2y\sec\theta = 24\sec\theta\sin\theta$$

$$3x\sin\theta\cos\theta - 2y = 24\sin\theta$$

12 a Use the chain rule to find the gradient:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}\theta}}{\frac{\mathrm{d}x}{\mathrm{d}\theta}} = \frac{3\cos\theta}{-5\sin\theta}$$

Then the equation of l_1 is given by

$$y - 3\sin\theta = -\frac{3\cos\theta}{5\sin\theta}(x - 5\cos\theta)$$

$$5y\sin\theta - 15\sin^2\theta = -3x\cos\theta + 15\cos^2\theta$$
$$3x\cos\theta + 5y\sin\theta = 15$$

b At Q the line cuts the y-axis, so x = 0Substitute in the equation for line l_1 :

$$5y\sin\theta = 15$$
 so $y = \frac{3}{\sin\theta}$

The point
$$Q$$
 has coordinates $\left(0, \frac{3}{\sin \theta}\right)$

The gradient of any line perpendicular to l_1 is:

$$5\sin\theta$$

$$3\cos\theta$$

Then the equation of l_2 is:

$$y - \frac{3}{\sin \theta} = \frac{5 \sin \theta}{3 \cos \theta} x$$

$$3y\sin\theta\cos\theta - 9\cos\theta = 5x\sin^2\theta$$

$$5x\sin^2\theta - 3y\sin\theta\cos\theta = -9\cos\theta$$

c If l_2 cuts the x-axis at (-4, 0), then substituting into the equation for l_2 gives

$$-20\sin^2\theta = -9\cos\theta$$

$$20(1-\cos^2\theta) = 9\cos\theta$$

$$20 - 20\cos^2\theta = 9\cos\theta$$

$$20\cos^2\theta + 9\cos\theta - 20 = 0$$

Using the quadratic formula to solve gives:

$$\cos\theta = \frac{-9 \pm \sqrt{81 - 4 \times 20 \times (-20)}}{40} = \frac{-9 \pm 41}{40}$$

Obviously
$$\cos \theta \neq -\frac{52}{40} < -1$$
, so

$$\cos\theta = \frac{32}{40} = \frac{4}{5}$$

13 a Use the chain rule to find the gradient:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{4\cos t}{-2\sin t} = -\frac{2\cos t}{\sin t}$$

Then an equation for l_1 is given by:

$$y - 4\sin t = -\frac{2\cos t}{\sin t}(x - 2\cos t)$$

$$y\sin t - 4\sin^2 t = -2x\cos t + 4\cos^2 t$$

$$2x\cos t + y\sin t = 4$$

b Since l_2 is perpendicular to l_1 , the

gradient of
$$l_2$$
 is $\frac{\sin t}{2\cos t}$

The line passes through the origin, so the

equation is
$$y = mx \Rightarrow y = x \frac{\sin t}{2\cos t}$$

Substituting $y = x \frac{\sin t}{2\cos t}$ into the equation

of l_1 to find the coordinates of the intersection gives:

$$2x\cos t + x\frac{\sin^2 t}{2\cos t} = 4$$
$$\Rightarrow 4x\cos^2 t + x\sin^2 t$$

$$\Rightarrow 4x\cos^2 t + x\sin^2 t$$

$$=8\cos t$$

$$\Rightarrow x = \frac{8\cos t}{4\cos^2 t + \sin^2 t}$$

Then
$$y = \frac{\sin t}{2\cos t} \times \frac{8\cos t}{4\cos^2 t + \sin^2 t} = \frac{4\sin t}{4\cos^2 t + \sin^2 t}$$

The coordinates of Q are:

$$\left(\frac{8\cos t}{4\cos^2 t + \sin^2 t}, \frac{4\sin t}{4\cos^2 t + \sin^2 t}\right)$$

Using the identity $2\cos^2\theta = 1 + \cos 2\theta$

14 Use the chain rule to find the gradient:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{b\cos t}{-a\sin t}$$

The equation of the tangent is:

$$y - b\sin t = \left(-\frac{b\cos t}{a\sin t}\right)(x - a\cos t)$$

$$ay \sin t - ab \sin^2 t = -bx \cos t + ab \cos^2 t$$

$$\Rightarrow bx \cos t + ay \sin t = ab$$

To find the x-intercept, substitute y = 0 in the equation for the tangent:

$$bx \cos t = ab \Rightarrow x = \frac{a}{\cos t}$$

To find the *y*-intercept, substitute x = 0 in the equation for the tangent:

$$ay \sin t = ab \Rightarrow y = \frac{b}{\sin t}$$

The area of the shaded triangle is:

$$\frac{1}{2} \times \frac{a}{\cos t} \times \frac{b}{\sin t} = \frac{ab}{2\sin t \cos t}$$
$$= \frac{ab}{\sin 2t}$$
$$= ab \csc 2t$$

15 Rearranging the equation for the ellipse:

$$y^2 = 4^2 \left(1 - \frac{x^2}{6^2} \right) \Rightarrow y = \frac{2\sqrt{36 - x^2}}{3}$$

In the first Cartesian quadrant, the ellipse can be seen as the graph of the function

$$y = \frac{2\sqrt{36 - x^2}}{3}$$

To find the area in the first quadrant, integrate from x = 3 to x = 6

The integral $\frac{2}{3}\int_{3}^{6} \sqrt{36-x^2} dx$ can be solved by substituting $6 \sin u = x$, as follows:

$$\frac{2}{3} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{36 - 36 \sin^2 u} (6 \cos u) \, \mathrm{d}u$$

$$=4\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\sqrt{1-\sin^2 u}\left(6\cos u\right)\mathrm{d}u$$

$$=24\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}\cos^2 u\,\,\mathrm{d}u$$

$$=12\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} (1+\cos 2u) \, \mathrm{d}u$$

$$=12\times\frac{\pi}{3}+\left[6\sin 2u\right]_{\frac{\pi}{6}}^{\frac{\pi}{2}}$$

$$=4\pi + \left[-6\sin\frac{\pi}{3} \right]$$

$$=4\pi-3\sqrt{3}$$

The area of the shaded region is twice the value of the integral, so it is $8\pi - 6\sqrt{3}$

Challenge

In the first Cartesian quadrant, the ellipse can be seen as the graph of the function $y = b\sqrt{1 - \frac{x^2}{a^2}}$

This can be integrated. The integral

$$\int_0^a b \sqrt{1 - \frac{x^2}{a^2}} dx$$
 can be solved by substituting

 $x = a \sin u$, as follows:

$$b\int_0^{\frac{\pi}{2}} \sqrt{1-\sin^2 u} (a\cos u) du = ab\int_0^{\frac{\pi}{2}} \cos^2 u du$$

$$= ab\int_0^{\frac{\pi}{2}} \frac{1+\cos 2u}{2} du$$

$$= ab\left(\frac{\pi}{4}\right) + \frac{ab}{4} \left[\sin 2u\right]_0^{\frac{\pi}{2}}$$

$$= ab\frac{\pi}{4}$$

The area of the ellipse is four times the area contained in a single quadrant, so it is $ab\pi$