Conic sections 2 3E

1
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \Rightarrow \frac{2x}{a^2} - \frac{2y}{b^2} \frac{dy}{dx} = 0$$
 which gives $\frac{dy}{dx} = \frac{b^2x}{a^2y}$

a
$$a^2 = 16, b^2 = 2 \implies \frac{dy}{dx} = \frac{x}{8y}$$

At (12, 4),
$$\frac{dy}{dx} = \frac{3}{8}$$

Equation of tangent is
$$y-4=\frac{3}{8}(x-12)$$
 or $8y=3x-4$

Equation of normal is
$$y-4=-\frac{8}{3}(x-12)$$
 or $3y+8x=108$

b
$$a^2 = 36, b^2 = 12 \Rightarrow \frac{dy}{dx} = \frac{x}{3y}$$

At (12, 6),
$$\frac{dy}{dx} = \frac{2}{3}$$

Equation of tangent is
$$y-6=\frac{2}{3}(x-12)$$
 or $3y=2x-6$

Equation of normal is
$$y-6=-\frac{3}{2}(x-12)$$
 or $2y+3x=48$

$$\mathbf{c}$$
 $a^2 = 25, b^2 = 3$: $\frac{dy}{dx} = \frac{3x}{25y}$ at (10, 3) $y' = \frac{2}{5}$

At (10, 3) equation of tangent is
$$y-3=\frac{2}{5}(x-10)$$
 or $5y=2x-5$

Equation of normal is
$$y-3=-\frac{5}{2}(x-10)$$
 or $2y+5x=56$

2 **a**
$$x = 5\cosh t$$
, $y = 2\sinh t$ $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2\cosh t}{5\sinh t}$

Equation of tangent is
$$y - 2\sinh t = \frac{2\cosh t}{5\sinh t}(x - 5\cosh t)$$

or
$$5y \sinh t + 10 = 2x \cosh t$$

Equation of normal is
$$y - 2 \sinh t = -\frac{5 \sinh t}{2 \cosh t} (x - 5 \cosh t)$$

or
$$2y \cosh t + 5x \sinh t = 29 \cosh t \sinh t$$

b
$$x = \sec t$$
, $y = 3\tan t$ $\Rightarrow \frac{dy}{dx} = \frac{3\sec^2 t}{\sec t \tan t} = \frac{3\sec t}{\tan t}$

Equation of tangent is
$$y - 3\tan t = \frac{3\sec t}{\tan t}(x - \sec t)$$
 or $y\tan t + 3 = 3x\sec t$

Equation of normal is
$$y - 3\tan t = -\frac{\tan t}{3\sec t}(x - \sec t)$$
 or $3y\sec t + x\tan t = 10\sec t\tan t$

3 Use the chain rule to find the gradient:
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{b \sec^2 t}{a \tan t \sec t} = \frac{b \sec t}{a \tan t}$$

Equation of tangent is
$$y - b \tan t = \frac{b \sec t}{a \tan t} (x - a \sec t)$$

$$ay \tan t - ab \tan^2 t = bx \sec t - ab \sec^2 t$$

$$ay \tan t + ab(\sec^2 t - \tan^2 t) = bx \sec t$$

Rearranging, $bx \sec t - ay \tan t = ab$

4
$$x = a \cosh t$$
, $y = b \sinh t \Rightarrow \frac{dy}{dx} = \frac{\dot{y}}{\dot{x}} = \frac{b \cosh t}{a \sinh t}$

Gradient of normal is
$$-\frac{a \sinh t}{b \cosh t}$$

Equation of normal is
$$y - b \sinh t = -\frac{a \sinh t}{b \cosh t} (x - a \cosh t)$$

$$by \cosh t - b^2 \sinh t \cosh t = -ax \sinh t + a^2 \cosh t \sinh t$$

$$ax \sinh t + by \cosh t = (a^2 + b^2) \sinh t \cosh t$$

5
$$x = 4 \cosh t$$
, $y = 3 \sinh t \Rightarrow \frac{dy}{dx} = \frac{3 \cosh t}{4 \sinh t}$

Equation of tangent is
$$y - 3\sinh t = \frac{3\cosh t}{4\sinh t}(x - 4\cosh t)$$

a At
$$A$$
, $x = 0 \Rightarrow y = 3\sinh t - \frac{3\cosh^2 t}{\sinh t} = -\frac{3}{\sinh t}$

So is
$$\left(0, -\frac{3}{\sinh t}\right)$$

b Using the result from question 4 with
$$a = 4$$
, $b = 3$

Equation of normal is
$$4x \sinh t + 3y \cosh t = (4^2 + 3^2) \sinh t \cosh t$$

$$= 25 \sinh t \cosh t$$

At B,
$$x = 0 \Rightarrow y = \frac{25}{3} \sinh t$$
 so $B \operatorname{is} \left(0, \frac{25}{3} \sinh t \right)$

c

Area of
$$\triangle APB = \frac{1}{2} \left| \left(\frac{25}{3} \sinh t - \left(-\frac{3}{\sinh t} \right) \right) 4 \cosh t \right|$$
$$= \frac{2}{3} \left| (25 \sinh^2 t + 9) \coth t \right|$$

6
$$\frac{x^2}{4} - \frac{y^2}{9} = 1$$
 $x = 2 \sec t, a = 2$

$$y = 3 \tan t$$
, $b = 3$

From question 3 the equation of the tangent is:

$$3x \sec t - 2y \tan t = 6$$

Tangents meet at
$$(1, 0)$$
, so let $x = 1, y = 0$

$$\Rightarrow 3 \sec t = 6$$

so
$$\frac{1}{2} = \cos t$$

Then
$$t = \pm \frac{\pi}{3}$$

$$\sec\left(\pm\frac{\pi}{3}\right) = 2$$
, $\tan\left(\pm\frac{\pi}{3}\right) = \pm\sqrt{3}$

So the coordinates of P and Q are $(4, 3\sqrt{3})$ and $(4, -3\sqrt{3})$

7 Using the result
$$y = mx + c$$
 is a tangent to $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ for $b^2 + c^2 = a^2 m^2$

$$y = 2x + c \implies m = 2$$

$$\frac{x^2}{10} - \frac{y^2}{4} = 1 \Rightarrow a^2 = 10, b^2 = 4$$

So
$$4+c^2=2^2\times 10=40$$

$$c^2 = 36$$

$$c = \pm 6$$

8 Use the result
$$b^2 + c^2 = a^2 m^2$$
 for $y = mx + c$ to be a tangent to $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

$$y = mx + 12 \Rightarrow c = 12$$

$$\frac{x^2}{49} - \frac{y^2}{25} = 1 \Rightarrow a^2 = 49, b^2 = 25$$

So
$$25 + 12^2 = 49m^2$$

$$169 = 49m^2$$

$$m^2 = \left(\frac{13}{7}\right)^2$$

$$m=\pm\frac{13}{7}$$

9 Use the result $b^2 + c^2 = a^2 m^2$ for y = mx + c to be a tangent to $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

Using
$$\frac{x^2}{4} - \frac{y^2}{15} = 1 \Rightarrow a^2 = 4$$
, $b^2 = 15$ so $15 + c^2 = 4m^2$ (1)
Using $\frac{x^2}{9} - \frac{y^2}{95} = 1 \Rightarrow a^2 = 9$, $b^2 = 95$ so $95 + c^2 = 9m^2$ (2)

so
$$15 + c^2 = 4m^2$$
 (1)

Using
$$\frac{x^2}{9} - \frac{y^2}{95} = 1 \Rightarrow a^2 = 9, b^2 = 95$$

$$95 + c^2 = 9m^2 \quad (2)$$

Solving the simultaneous equations:

$$(2)-(1) \qquad 80=5\,m^2$$

$$\Rightarrow m^2 = 16$$

$$m = \pm 4$$

Substituting $m = \pm 4$ into (1):

$$c^2 = 4(16) - 15$$

$$=49$$

$$\Rightarrow c = \pm 7$$

So $m = \pm 4$ and $c = \pm 7$, i.e. lines $y = 4x \pm 7$ and $y = -4x \pm 7$

10 a Use the result $b^2 + c^2 = a^2 m^2$ for y = mx + c to be a tangent to $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

$$y = -x + c \implies m = -1$$

Using
$$\frac{x^2}{25} - \frac{y^2}{16} = 1 \Rightarrow a^2 = 25, b^2 = 16$$

So
$$16 + c^2 = 25(-1)^2$$

$$c^2 = 9$$

$$c = \pm 3$$

But
$$c > 0$$
, so $c = 3$

b Substitute y = (3 - x) into the equation for the hyperbola

$$\frac{x^2}{25} - \frac{(3-x)^2}{16} = 1$$

$$16x^2 - 25(9 + x^2 - 6x) = 25 \times 16$$

$$-9x^2 - 225 + 150x = 400$$

$$0 = 9x^2 - 150x + 625$$

$$0 = (3x - 25)^2$$

$$\Rightarrow x = \frac{25}{3}, y = -\frac{16}{3}$$

So
$$P$$
 is $\left(\frac{25}{3}, \frac{-16}{3}\right)$

11 a
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

$$x = a \cosh t$$
, $y = b \sinh t$ $\Rightarrow \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{b \cosh t}{a \sinh t}$

Gradient of normal is $-\frac{a \sinh t}{b \cosh t}$

Equation of normal is
$$y - b \sinh t = -\frac{a \sinh t}{b \cosh t} (x - a \cosh t)$$

$$by \cosh t - b^2 \sinh t \cosh t = -ax \sinh t + a^2 \cosh t \sinh t$$
$$ax \sinh t + by \cosh t = (a^2 + b^2) \sinh t \cosh t$$

b At point
$$P, y = 0$$

Substituting y = 0 in the equation for the normal: $ax = (a^2 + b^2) \cosh t$

$$x = \frac{(a^2 + b^2)}{a} \cosh t$$

The coordinates of
$$P$$
 are $\left(\left(\frac{a^2+b^2}{a}\right)\cosh t, 0\right)$

c At the point (a, 0), $y = b \sinh t = 0$, which corresponds to t = 0, since $b \ne 0$ Using the general form of the equation of the tangent to a hyperbola:

$$bx \cosh t - ay \sinh t = ab$$

$$bx = ab$$

$$x = a$$

So the equation of l_2 is x = a.

Substituting this into the equation of l_1 gives:

$$a^2 \sinh t + by \cosh t = (a^2 + b^2) \sinh t \cosh t$$

$$by \cosh t = a^2 \sinh t (\cosh t - 1) + b^2 \sinh t \cosh t$$

$$y = \frac{a^2 \sinh t (\cosh t - 1) + b^2 \sinh t \cosh t}{b \cosh t}$$

The coordinates of
$$Q$$
 are then $\left(a, \frac{\left(a^2 + b^2\right) \sinh t \cosh t - a^2 \sinh t}{b \cosh t}\right)$

12 a Use the chain rule to find the gradient of the tangent to $\frac{x^2}{49} - \frac{y^2}{25} = 1$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}\theta}}{\frac{\mathrm{d}x}{\mathrm{d}\theta}} = \frac{5\sec^2\theta}{7\tan\theta\sec\theta} = \frac{5\sec\theta}{7\tan\theta} = \frac{5}{7\sin\theta}$$

An equation of the tangent is:
$$y - 5 \tan \theta = \frac{5}{7 \sin \theta} (x - 7 \sec \theta)$$

$$7y\sin\theta - 35\tan\theta\sin\theta = 5x - 35\sec\theta$$

$$7y\sin\theta = 5x - 35\cos\theta$$

(It's easy to verify that the relation $\tan \theta \sin \theta - \sec \theta = -\cos \theta$ holds.)

12 b The gradient of a line that is perpendicular to l_1 is $-\frac{7\sin\theta}{5}$, therefore the equation of l_2

(which passes through the origin) is $y = -\frac{7 \sin \theta}{5}x$

Substitute this value into the equation of l_1 :

$$-\frac{49\sin^2\theta}{5}x = 5x - 35\cos\theta$$

$$-49x\sin^2\theta = 25x - 175\cos\theta$$

$$x = \frac{175\cos\theta}{25 + 49\sin^2\theta}$$

Then
$$y = -\frac{7\sin\theta}{5}x$$

$$= -\frac{7\sin\theta}{5} \times \frac{175\cos\theta}{25 + 49\sin^2\theta}$$

$$= -\frac{245\sin\theta\cos\theta}{25 + 49\sin^2\theta}$$

The coordinates of Q are $\left(\frac{175\cos\theta}{25+49\sin^2\theta}, -\frac{245\sin\theta\cos\theta}{25+49\sin^2\theta}\right)$

13
$$x^2 - 4y^2 = 16 \Rightarrow \frac{x^2}{16} - \frac{y^2}{4} = 1$$
 so $a = 4$, $b = 2$

Let
$$P = (x_1, y_1), Q = (x_2, y_2)$$

Use the chain rule to find the gradient for a general point on the hyperbola $(4\cosh t, 2\sinh t)$:

gradient of the tangent is
$$\frac{\cosh t}{2 \sinh t} = \frac{x}{4y}$$

The equation of the tangent at *P* is then $y - y_1 = \frac{x}{4y}(x - x_1)$

$$4y^2 - 4yy_1 = x^2 - xx_1$$

$$xx_1 - 4yy_1 = 16$$

The same holds for the tangent at Q, so $xx_2 - 4yy_2 = 16$

The point (m, n) must satisfy both equations.

Then

$$mx_1 - 4ny_1 = mx_2 - 4ny_2 \implies m(x_1 - x_2) = 4n(y_1 - y_2)$$

Then the slope of the line l_1 , which joins P and Q, is $\frac{m}{4n}$

But writing $y - y_1 = \frac{m}{4n}(x - x_1)$ gives $4ny - 4ny_1 = mx - mx_1$, and we already know that

 $mx_1 - 4ny_1 = 16$, so the equation of line *l* is mx - 4ny = 16

7

14 Consider the point $(4\sec\theta, 2\tan\theta)$. Differentiating using the chain rule (see question 3 in this

exercise) leads to the equation for the tangent: $2x \sec \theta - 4y \tan \theta = 8$

Multiplying both sides by $\cos \theta$ gives $2x - 4y \sin \theta = 8 \cos \theta$

Substitute x = 6 and y = 4 to get $4\sin\theta + 2\cos\theta = 3$

Let $R \sin \alpha = 4$ and $R \cos \alpha = 2$: this gives $R \cos (\theta - \alpha) = 3$

Find R from
$$R^2(\cos^2 \alpha + \sin^2 \alpha) = 4^2 + 2^2$$
 so $R = \sqrt{4^2 + 2^2} = \sqrt{20}$

Find α by calculating $\arctan \frac{4}{2} = \arctan 2 = 1.107...$

Using the condition $\sqrt{20}\cos(\theta-1.107...)=3$ gives a set of values:

$$\theta$$
-1.107... = ..., 0.835..., 5.447..., 7.118..., ...

There are only two possible values for θ in the range $[0,2\pi]$, so there are only two possible values for θ ; therefore there are only two tangents.

15 Substituting x = 2 into the equation of the hyperbola gives the coordinates of P as $(2, 2\sqrt{3})$.

In the first quadrant the curve crosses the axis at (1, 0).

The area R is made up of two parts; the area under the hyperbola from x = 1 to x = 2, and the right-angled triangle from x = 2 to where line l crosses the x-axis.

Area under the hyperbola:

For x>1, in the first quadrant the hyperbola can be seen as the graph of the function $y=2\sqrt{x^2-1}$, which can be integrated.

To solve the integral $\int_{1}^{2\sqrt{3}} 2\sqrt{x^2 - 1} \, dx$, use the substitution $x = \cosh u$:

$$2\int_0^{\operatorname{arcosh}2} \sinh^2 u \, du = 2\int_0^{\operatorname{arcosh}2} \frac{\cosh 2u - 1}{2} \, du$$

$$= -\operatorname{arcosh}2 + \left[\frac{\sinh 2u}{2}\right]_0^{\operatorname{arcosh}2}$$

$$= -\operatorname{arcosh}2 + \left[\sinh (\operatorname{arcosh}2)\cosh (\operatorname{arcosh}2)\right]$$

$$= -\operatorname{arcosh}2 + 2\sqrt{3}$$

Area of triangle:

Using implicit differentiation, gradient of the tangent is $\frac{dy}{dx} = \frac{4x}{y}$

so at P gradient of the tangent is $\frac{4\sqrt{3}}{3}$, and line l has gradient $-\frac{\sqrt{3}}{4}$

The normal at P has equation $y - 2\sqrt{3} = -\frac{\sqrt{3}}{4}(x-2) \Rightarrow 4y + x\sqrt{3} = 10\sqrt{3}$

This meets the x-axis at x = 10. The area of the right-angled triangle contained in R is $\frac{8 \times 2\sqrt{3}}{2} = 8\sqrt{3}$

The total area of the region R is therefore $8\sqrt{3} - \operatorname{arcosh} 2 + 2\sqrt{3} = 10\sqrt{3} - \operatorname{arcosh} 2$

- **16 a** The equations of the asymptotes of *H* are y = x and y = -x.
 - Differentiating, gradient of tangent to *H* is $\frac{dy}{dx} = \frac{x}{y}$
 - A and B lie on the lines y = x and y = -x. Let A and B have coordinates (a, a) and (b, -b).
 - The midpoint of AB is $\left(\frac{a+b}{2}, \frac{a-b}{2}\right)$
 - For a generic point P on H, the coordinates are (X, Y), so the gradient of the tangent at P is $\frac{X}{Y}$ and
 - the equation of the tangent at P is $y Y = \frac{X}{Y}(x X)$
 - This tangent cuts the asymptotes at A and B, so the coordinates of A and B must be on the line.

At A:
$$a - Y = \frac{X}{Y}(a - X) \Rightarrow a = X + Y$$

At B:
$$-b-Y = \frac{X}{Y}(b-X) \Rightarrow b = X-Y$$

So
$$X = \frac{a+b}{2}$$
 and $Y = \frac{a-b}{2}$

b |OA| is $\sqrt{2}|a|$ for all positions of A, and |OB| is $\sqrt{2}|b|$ for all positions of B.

So
$$|OA| \times |OB| = 2|ab|$$

From part **a**,
$$X^2 = \frac{a^2 + 2ab + b^2}{4}$$
 and $Y^2 = \frac{a^2 - 2ab + b^2}{4}$

- So in terms of X and Y, $|ab| = |X^2 Y^2|$ but from the equation for H this is equal to 1
- So $|OA| \times |OB| = 2|ab| = 2$, which is constant.