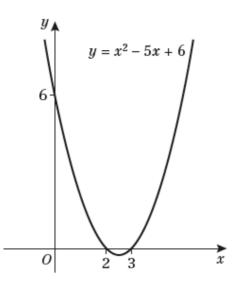
Inequalities 4B

1 a $y = x^2 - 5x + 6$

y = (x-3)(x-2)

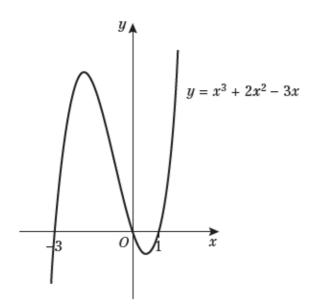
factorising to find when the curve cuts the *x*-axis

The curve is a quadratic graph with a positive x^2 coefficient, so it is a parabola with a minimum. The graph crosses the *x*-axis at (3, 0) and (2, 0) and the *y*-axis at (0, 6). So the sketch is:



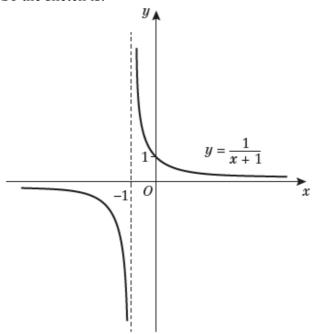
b $y = x^{3} + 2x^{2} - 3x$ $y = x(x^{2} + 2x - 3)$ y = x(x - 1)(x + 3)

The curve is a cubic graph with a positive x^3 coefficient, so as $x \to \infty$, $y \to \infty$ and as $x \to -\infty$, $y \to -\infty$ and the graph crosses *x*-axis at (-3, 0), (0, 0) and (1, 0). So the sketch is:



1 c
$$y = \frac{1}{x+1}$$

The curve is a reciprocal graph. There is a horizontal asymptote at y = 0 (as $x \to \pm \infty$, $y \to 0$) and a vertical asymptote at x = -1 (as $x \to -1$, $y \to \pm \infty$). The graph crosses the *y*-axis at (0, 1). So the sketch is:

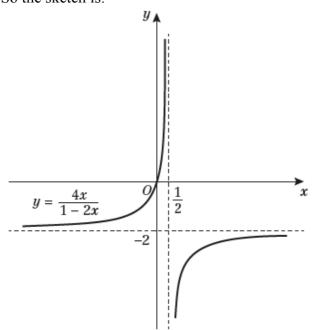


d
$$y = \frac{4x}{1-2x}$$

 $y = \frac{4x}{1-2x} = -2\left(1 - \frac{1}{1-2x}\right)$

rearranging to see how the curve behaves as $x \rightarrow \infty$

The curve is a reciprocal graph. There is a horizontal asymptote at y = -2 (as $x \to \pm \infty$, $y \to -2$) and a vertical asymptote at $x = \frac{1}{2}$ (as $x \to \frac{1}{2}$, $y \to \pm \infty$). The graph crosses the axes at (0, 0). So the sketch is:



2 a $y = x^2 - 2x + 1$

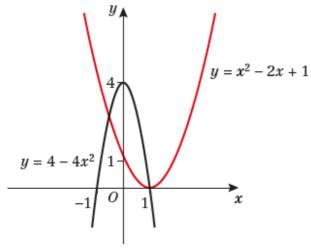
 $y = (x-1)(x-1) = (x-1)^2$

The curve is a quadratic graph with a positive x^2 coefficient, so it is a parabola and it has a minimum at (1, 0). The graph crosses the *y*-axis at (0, 1).

$$y = 4 - 4x^{2}$$

$$y = 4(1 - x^{2}) = -4(x - 1)(x + 1)$$

The curve is a quadratic graph with a negative x^2 coefficient, so it is a parabola and it has a maximum at (0, 4). The graph crosses the *x*-axis at (-1, 0) and (1, 0).

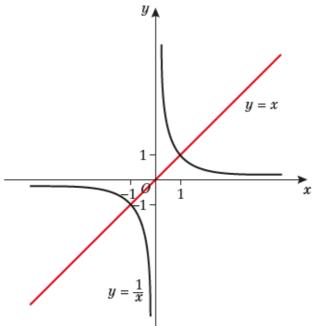


2 b y = x

The graph is a straight line with a positive gradient of 1 that passes through (0, 0).

The curve $y = \frac{1}{x}$ has a reciprocal graph.

There is a horizontal asymptote at y = 0 (as $x \to \pm \infty$, $y \to 0$) and a vertical asymptote at x = 0 (as $x \to 0$, $y \to \pm \infty$). The graph does not cut the coordinate axes.

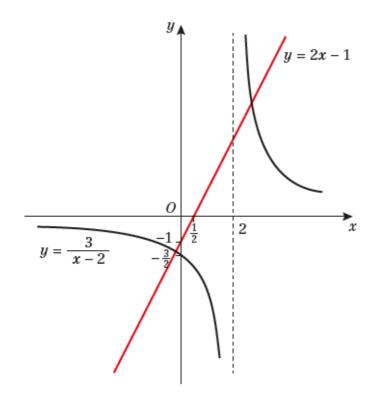


2 c y = 2x - 1

The graph is a straight line with a positive gradient of 2 that passes through (0,-1) and $(\frac{1}{2},0)$

 $y = \frac{3}{x-2}$

The curve is a reciprocal graph. There is a horizontal asymptote at y = 0 (as $x \to \pm \infty$, $y \to 0$) and a vertical asymptote at x = 2 (as $x \to 2$, $y \to \pm \infty$). The graph crosses the *y*-axis at $(0, -\frac{3}{2})$.



2 d y = 4 - 3x

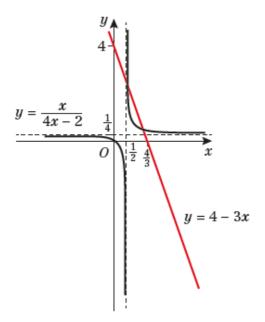
The graph is a straight line with a negative gradient that passes through (0,4) and $(\frac{4}{3},0)$

$$y = \frac{x}{4x - 2}$$
$$y = \frac{x}{4x - 2} = \frac{1}{4} \left(\frac{4x}{4x - 2} \right) = \frac{1}{4} \left(1 + \frac{2}{4x - 2} \right)$$

rearranging to see how the curve behaves as $x \to \infty$

The curve is a reciprocal graph. There is a horizontal asymptote at $y = \frac{1}{4}$ (as $x \to \pm \infty$, $y \to \frac{1}{4}$) and a vertical asymptote at $x = \frac{1}{2}$ (as $x \to \frac{1}{2}$, $y \to \pm \infty$). The graph crosses the axes at (0, 0).

So the sketch of both curves is:



3 a The *x*-coordinate of the point of intersection is found by equating the right-hand side of the two equations.

 $\frac{2}{x+1} = \frac{1}{x-3}$ 2(x-3) = x+12x-x = 1+6 $\Rightarrow x = 7$

The *y*-coordinate of the point of intersection is found by substituting the *x*-coordinate into either of the two equations.

 $y = \frac{1}{x-3} = \frac{1}{7-3} = \frac{1}{4}$

Therefore the functions intersect at $(7, \frac{1}{4})$

Further Pure Mathematics 1

3 b The *x*-coordinates of the points of intersection are found by equating the right-hand side of the two equations.

 $x-2 = \frac{3x}{x+2}$ (x-2)(x+2) = 3x $x^2 - 3x - 4 = 0$ (x-4)(x+1) = 0 $\Rightarrow x = 4, -1$

The *y*-coordinates of the points of intersection are found by substituting the *x*-coordinates into either of the two equations.

For x = 4, y = x - 2 = 4 - 2 = 2For x = -1, y = x - 2 = -1 - 2 = -3

Therefore the functions intersect at (4, 2) and (-1, -3)

c The *x*-coordinates of the points of intersection are found by equating the right-hand side of the two equations.

$$x^{2} - 4 = \frac{4(x+2)}{x-2}$$

$$(x+2)(x-2) = \frac{4(x+2)}{x-2}$$

$$(x+2)(x-2)^{2} = 4(x+2)$$

$$(x+2)((x-2)^{2} - 4) = 0$$

$$(x+2)(x^{2} - 4x + 4 - 4) = 0$$

$$(x+2)(x^{2} - 4x) = 0$$

$$(x+2)x(x-4) = 0$$

$$\Rightarrow x = -2, 0, 4$$

The *y*-coordinates of the points of intersection are found by substituting the *x*-coordinates into either of the two equations.

For
$$x = -2$$
, $y = x^2 - 4 = (-2)^2 - 4 = 0$
For $x = 0$, $y = x^2 - 4 = 0^2 - 4 = -4$
For $x = 4$, $y = x^2 - 4 = 4^2 - 4 = 12$

Therefore the functions intersect at (-2, 0), (0, -4) and (4, 12)

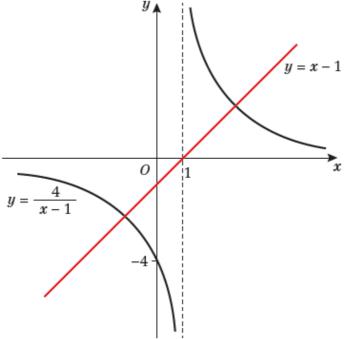
4 a y = x - 1

The graph is a straight line with a positive gradient of 1 that passes through (0, -1) and (1, 0)

 $y = \frac{4}{x - 1}$

The curve is a reciprocal graph. There is a horizontal asymptote at y = 0 (as $x \to \pm \infty$, $y \to 0$) and a vertical asymptote at x = 1 (as $x \to 1$, $y \to \pm \infty$). The graph crosses the *y*-axis at (0, -4).

So the sketch of both curves is:



b The *x*-coordinates of the points of intersection are found by equating the right-hand side of the two equations.

 $x-1 = \frac{4}{x-1}$ $x^{2}-2x+1 = 4$ $x^{2}-2x-3 = 0$ (x-3)(x+1) = 0 $\Rightarrow x = -1, 3$

The *y*-coordinates of the points of intersection are found by substituting the *x*-coordinates into either of the two equations.

For x = 3, y = x - 1 = 3 - 1 = 2For x = -1, y = x - 1 = -1 - 1 = -2Therefore the functions intersect at (-1, -2), and (3, 2)

c The solution to the inequality is when the line y = x - 1 lies above the curve $y = \frac{4}{x - 1}$

Using the sketch from part \mathbf{a} and the points of intersection from part \mathbf{b} this occurs when

-1 < x < 1 or x > 3

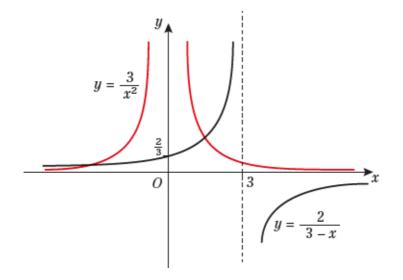
5 a $y = f(x) = \frac{3}{x^2}$

This curve is always positive $(y \ge 0)$, with a horizontal asymptote at y = 0 (as $x \to \pm \infty$, $y \to 0$) and a vertical asymptote at x = 0 (as $x \to 0$, $y \to \infty$). The graph does not cut the coordinate axes.

$$y = g(x) = \frac{2}{3-x}$$

The curve is a reciprocal graph. There is a horizontal asymptote at y = 0 (as $x \to \pm \infty$, $y \to 0$) and a vertical asymptote at x = 3 (as $x \to 3$, $y \to \pm \infty$). The graph crosses the *y*-axis at $(0, \frac{2}{3})$.

So the sketch of both curves is:



b The *x*-coordinates of the points of intersection are found by equating the right-hand side of the two equations.

$$\frac{3}{x^2} = \frac{2}{3-x}$$

$$3(3-x) = 2x^2$$

$$2x^2 + 3x - 9 = 0$$

$$(2x-3)(x+3) = 0$$

$$\Rightarrow x = -3, \frac{3}{2}$$

For $x = \frac{3}{2}, y = \frac{3}{x^2} = \frac{3}{\left(\frac{3}{2}\right)^2} = \frac{4}{3}$
For $x = -3, y = \frac{3}{x^2} = \frac{3}{(-3)^2} = \frac{1}{3}$

Therefore the points of intersection are $(-3, \frac{1}{3})$ and $(\frac{3}{2}, \frac{4}{3})$

5 c The solution to the inequality is when the curve $y = \frac{3}{x^2}$ lies above the curve $y = \frac{2}{3-x}$ Using the sketch from part **a** and the points of intersection from part **b** this occurs when

$$-3 < x < \frac{3}{2}$$
 or $x > 3$

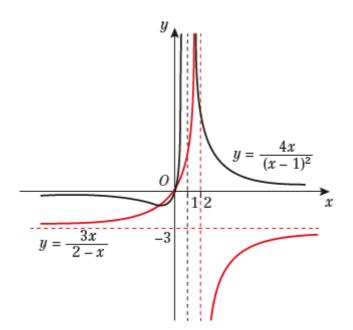
So the solution in set notation is $\left\{x: -3 < x < \frac{3}{2}\right\} \cup \{x: x > 3\}$

6 a $y = \frac{3x}{2-x}$ $y = \frac{3x}{2-x} = -3\left(1 - \frac{2}{2-x}\right)$ rearranging to see how the curve behaves as $x \to \infty$

The curve is a reciprocal graph. There is a horizontal asymptote at y = -3 (as $x \to \pm \infty$, $y \to -3$) and a vertical asymptote at x = 2 (as $x \to 2$, $y \to \pm \infty$). The graph crosses the axes at (0, 0).

$$y = \frac{4x}{\left(x-1\right)^2}$$

There is a horizontal asymptote at y = 0 (as $x \to \pm \infty$, $y \to 0$) and a vertical asymptote at x = 1 (as $x \to 1$, $y \to \infty$). The graph crosses the axes at (0, 0). Note also that as the denominator is always positive (for $x \neq 1$) then if x > 0, then y > 0; and if x < 0, then y < 0.



Further Pure Mathematics 1

- 6 **b** The *x*-coordinates of the points of intersection are found by equating the right-hand side of the two equations.
 - $\frac{3x}{2-x} = \frac{4x}{(x-1)^2}$ $3x(x-1)^2 = 4x(2-x)$ $x(3x^2 6x + 3 8 + 4x) = 0$ $x(3x^2 2x 5) = 0$ x(3x-5)(x+1) = 0 $\Rightarrow x = -1, 0, \frac{5}{3}$ For $x = -1, y = \frac{3x}{2-x} = \frac{3 \times -1}{2 (-1)} = -1$ For x = 0, y = 0For $x = \frac{5}{3}, y = \frac{3x}{2-x} = \frac{3 \times \frac{5}{3}}{2 - \frac{5}{3}} = 15$

Therefore the points of intersection are (-1, -1), (0, 0) and $(\frac{5}{3}, 15)$

c The solution to the inequality is when the curve $y = \frac{4x}{(x-1)^2}$ lies on or above the curve $y = \frac{3x}{2-x}$ Using the sketch from part **a** and the points of intersection from part **b** this occurs when

$$x \leqslant -1$$
 or $0 \leqslant x < 1$ or $1 < x \leqslant \frac{5}{3}$ or $x \ge 2$

Note that there are four intervals as the inequality is not defined when x = 1, and as the inequality is less than or equal to (\leq), the values of *x* at the points of intersection are included in the solution set (i.e. when x = -1, 0 or $\frac{5}{3}$).

7 a y = x - 2

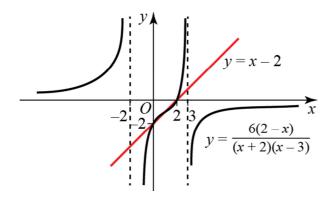
The graph is a straight line with a positive gradient of 1 that passes through (0, -2) and (2, 0)

$$y = \frac{6(2-x)}{(x+2)(x-3)}$$

The graph crosses the *y*-axis at (0, -2) and the *x*-axis at (2, 0). There are vertical asymptotes at x = 3 and x = -2. There is a horizontal asymptote at y = 0 (as $x \to \pm \infty$, $y \to 0$).

Note the regions where *y* is positive, and where it is negative: for x > 3, y < 0; for 2 < x < 3, y > 0; for -2 < x < 2, y < 0; for x < -2, y > 0.

So the sketch of both curves is:



b The *x*-coordinates of the points of intersection are found by equating the right-hand side of the two equations.

$$x-2 = \frac{6(2-x)}{(x+2)(x-3)}$$

(x-2)(x+2)(x-3) = -6(x-2)
(x-2)(x²-x-6+6) = 0
(x-2)x(x-1) = 0
 $\Rightarrow x = 0, 1, 2$
For x = 2, y = x-2 = 2-2 = 0
For x = 0, y = x-2 = 0-2 = -2
For x = 1, y = x-2 = 1-2 = -1
Therefore the points of intersection are (0, -2), (1, -1) and (2, 0)

c The solution is when the line y = x - 2 lies on or below the curve $y = \frac{6(2-x)}{(x+2)(x-3)}$ Using the sketch from part **a** and the points of intersection from part **b** this occurs when x < -2 or $0 \le x \le 1$ or $2 \le x < 3$

8 a
$$y = \frac{1}{x}$$

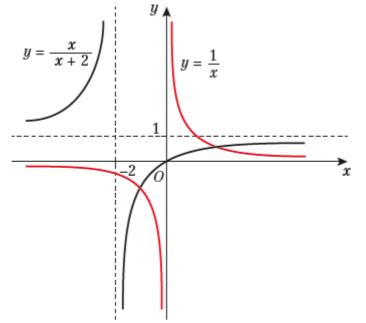
The curve is a reciprocal graph. There is a horizontal asymptote at y = 0 (as $x \to \pm \infty$, $y \to 0$) and a vertical asymptote at x = 0 (as $x \to 0$, $y \to \pm \infty$). The graph does not cross the axes.

$$y = \frac{x}{x+2}$$

$$y = \frac{x}{x+2} = \frac{x+2-2}{x+2} = 1 - \frac{2}{x+2}$$
 rearranging to see how the curve behaves as $x \to \infty$

The curve is a reciprocal graph. There is a horizontal asymptote at y = 1 (as $x \to \pm \infty$, $y \to 1$) and a vertical asymptote at x = -2 (as $x \to -2$, $y \to \pm \infty$). The graph crosses the axes at (0, 0).

So the sketch of both curves is:



b The *x*-coordinates of the points of intersection are found by equating the right-hand side of the two equations.

 $\frac{1}{x} = \frac{x}{x+2}$ $x+2 = x^{2}$ $x^{2} - x - 2 = 0$ (x-2)(x+1) = 0 $\Rightarrow x = -1, 2$ For x = 2, $y = \frac{1}{x} = \frac{1}{2}$ For x = -1, $y = \frac{1}{x} = -1$

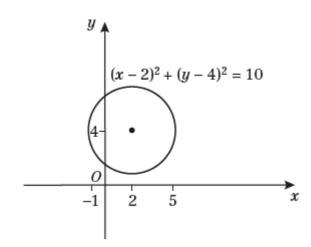
Therefore the points of intersection are (-1, -1) and $(2, \frac{1}{2})$

c The solution is when the curve $y = \frac{1}{x}$ lies above the curve $y = \frac{x}{x+2}$ Using the sketch from part **a** and the points of intersection from part **b** this occurs when

-2 < x < -1 or 0 < x < 2

a The circle has its centre at (2, 4). The radius of the circle is $\sqrt{10}$. When y = 0, $(x-2)^2 + (-4)^2 = 10 \Rightarrow (x-2)^2 = -6$. There are no real solutions, so the circle does not intersect the *x*-axis.

When x = 0, $(-2)^2 + (y-4)^2 = 10 \Rightarrow (y-4)^2 = 6 \Rightarrow y = 4 \pm \sqrt{6}$. So the circle intersects the y-axis at $(0, 4 - \sqrt{6})$ and $(0, 4 + \sqrt{6})$ So the sketch is:



b The *x*-coordinates of the points of intersection are found by substituting the equation for y into the equation of the circle.

$$(x-2)^{2} + \left(\frac{4x-5}{x-2}-4\right)^{2} = 10$$

$$(x-2)^{2} + \left(\frac{4x-5-4(x-2)}{x-2}\right)^{2} = 10$$

$$(x-2)^{2} + \left(\frac{4x-5-4x+8}{x-2}\right)^{2} = 10$$

$$(x-2)^{2} + \left(\frac{3}{x-2}\right)^{2} = 10$$

$$(x-2)^{4} + 9 = 10(x-2)^{2}$$

$$(x-2)^{4} - 10(x-2)^{2} + 9 = 0$$

$$((x-2)^{2} - 9)((x-2)^{2} - 1) = 0$$

$$(x^{2} - 4x - 5)(x^{2} - 4x + 3) = 0$$

$$(x-5)(x+1)(x-3)(x-1) = 0$$

$$\Rightarrow x = -1, 1, 3, 5$$

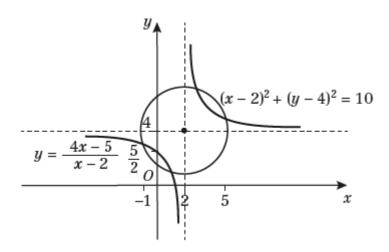
For
$$x = -1$$
, $y = \frac{4x-5}{x-2} = \frac{4 \times -1-5}{-1-2} = 3$
For $x = 1$, $y = \frac{4x-5}{x-2} = \frac{4 \times 1-5}{1-2} = 1$
For $x = 3$, $y = \frac{4x-5}{x-2} = \frac{4 \times 3-5}{3-2} = 7$
For $x = 5$, $y = \frac{4x-5}{x-2} = \frac{4 \times 5-5}{5-2} = 5$

Therefore the points of intersection are (-1, 3), (1, 1), (3, 7) and (5, 5)

c
$$y = \frac{4x-5}{x-2}$$

 $y = \frac{4x-5}{x-2} = 4\left(\frac{x-\frac{5}{4}}{x-2}\right) = 4\left(\frac{x-2+\frac{3}{4}}{x-2}\right) = 4\left(1+\frac{3}{4(x-2)}\right)$

The curve is a reciprocal graph. There is a horizontal asymptote at y = 4 (as $x \to \pm \infty$, $y \to 4$) and a vertical asymptote at x = 2 (as $x \to 2$, $y \to \pm \infty$). The graph crosses the axes at $(\frac{5}{4}, 0)$ and $(0, \frac{5}{2})$.



d The inequality holds when the curve $y = \frac{4x-5}{x-2}$ lies within the circle. Using the sketch from part **c** and the points of intersection from part **b** this occurs when -1 < x < 1 or 3 < x < 5

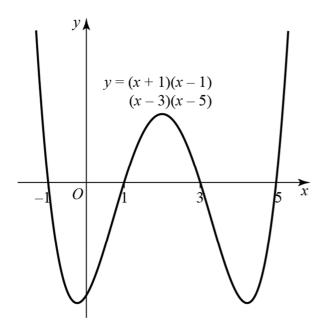
Alternatively, the problem can be tackled algebraically by solving

$$(x-2)^{2} + \left(\frac{4x-5}{x-2} - 4\right)^{2} < 10$$
$$(x-2)^{2} + \left(\frac{4x-5+4(x-2)}{x-2}\right)^{2} < 10$$
$$(x-2)^{2} + \left(\frac{3}{x-2}\right)^{2} < 10$$

Multiply both sides by $(x-2)^2$ and following the same algebraic steps as part **b** gives (x-5)(x+1)(x-3)(x-1) < 0

So the critical values are x = -1, 1, 3 or 5

The curve y = (x+1)(x-1)(x-3)(x-5) is a quartic graph with positive x^4 coefficient, so the curve starts in the top left and ends in the top right and passes through (-1,0), (1,0), (3,0) and (5,0). A sketch of the curve is



The solution to corresponds to the section of the graph that is below the *x*-axis. So the solution is -1 < x < 1 or 3 < x < 5