## Reducible differential equations 9A

1 a 
$$z = \frac{y}{x} \implies y = xz$$

$$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = z + x \frac{\mathrm{d}z}{\mathrm{d}x}$$

Use the given substitution to express

$$\frac{dy}{dx}$$
 in terms of z, x and  $\frac{dz}{dx}$ 

Substitute into the equation:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x} + \frac{x}{y}$$

$$\therefore z + x \frac{\mathrm{d}z}{\mathrm{d}x} = z + \frac{1}{z}$$

$$\therefore \qquad x \frac{\mathrm{d}z}{\mathrm{d}x} = \frac{1}{z}$$

Separate the variables:

Then 
$$\int z \, dz = \int \frac{1}{x} \, dx$$

$$\therefore \frac{z^2}{2} = \ln x + c$$

$$\therefore \frac{y^2}{2x^2} = \ln x + c, \text{ as } z = \frac{y}{x}$$

$$\therefore \qquad y^2 = 2x^2(\ln x + c)$$

1 **b** As 
$$z = \frac{y}{x'}$$
  $y = zx$  and  $\frac{dy}{dx} = z + x \frac{dz}{dx}$ 

$$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x} + \frac{x^2}{y^2} \Longrightarrow z + x \frac{\mathrm{d}z}{\mathrm{d}x} = z + \frac{1}{z^2}$$

$$\therefore \qquad x \frac{\mathrm{d}z}{\mathrm{d}x} = \frac{1}{z^2}$$

Separate the variables:

Then 
$$\int z^2 dz = \int \frac{1}{x} dx$$

$$\therefore \frac{z^3}{3} = \ln x + c$$

But 
$$z = \frac{y}{x}$$

$$\therefore \frac{y^3}{3x^3} = \ln x + c$$

$$\therefore y^3 = 3x^3 (\ln x + c)$$

**c** As 
$$z = \frac{y}{x}$$
,  $y = zx$  and  $\frac{dy}{dx} = z + x \frac{dz}{dx}$ 

$$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x} + \frac{y^2}{x^2} \Longrightarrow z + x \frac{\mathrm{d}z}{\mathrm{d}x} = z + z^2$$

$$\therefore \qquad x \frac{\mathrm{d}z}{\mathrm{d}x} = z^2$$

Separate the variables:

$$\therefore \int \frac{1}{z^2} dz = \int \frac{1}{x} dx$$

$$\therefore -\frac{1}{z} = \ln x + c$$

$$\therefore \qquad z = \frac{-1}{\ln x + c}$$

But 
$$z = \frac{y}{x}$$

$$\therefore y = \frac{-x}{\ln x + c}$$

1 **d** 
$$z = \frac{y}{x} \Rightarrow y = zx$$
 and  $\frac{dy}{dx} = z + x \frac{dz}{dx}$ 

$$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^3 + 4y^3}{3xy^2} \Longrightarrow z + x \frac{\mathrm{d}z}{\mathrm{d}x} = \frac{x^3 + 4z^3x^3}{3xz^2x^2}$$

$$x \frac{\mathrm{d}z}{\mathrm{d}x} = \frac{1+4z^3}{3z^2} - z$$
$$= \frac{1+z^3}{3z^2}$$

Separate the variables:

$$\therefore \int \frac{3z^2}{1+z^3} \, \mathrm{d}z = \int \frac{1}{x} \, \mathrm{d}x$$

$$\therefore \ln(1+z^3) = \ln x + \ln A$$
, where A is constant

$$\therefore \ln(1+z^3) = \ln Ax$$

So 
$$1+z^3=Ax$$

And 
$$z^3 = Ax - 1$$
. But  $z = \frac{y}{x}$ 

$$\therefore \frac{y^3}{x^3} = Ax - 1$$

$$\therefore$$
  $y^3 = x^3 (Ax - 1)$ , where A is a positive constant.

2 a Given 
$$z = y^{-2}$$
,  $y = z^{-\frac{1}{2}}$  and  $\frac{dy}{dx} = -\frac{1}{2}z^{-\frac{3}{2}}\frac{dz}{dx}$   

$$\frac{dy}{dx} + \left(\frac{1}{2}\tan x\right)y = -(2\sec x)y^{3}$$
So  $\Rightarrow -\frac{1}{2}z^{-\frac{3}{2}}\frac{dz}{dx} + \left(\frac{1}{2}\tan x\right)z^{-\frac{1}{2}} = 2\sec xz^{-\frac{3}{2}}$   

$$\therefore \frac{dz}{dx} - z\tan x = 4\sec x$$

Find 
$$\frac{dy}{dx}$$
 in terms of  $\frac{dz}{dx}$  and z

## **2 b** We wish to solve

$$\frac{\mathrm{d}z}{\mathrm{d}x} - z \tan x = 4 \sec x \quad *$$

This is a first order equation which can be solved by using an integrating factor.

The integrating factor is  $e^{-\int \tan x \, dx} = e^{\ln \cos x}$   $= \cos x$ The equation that you obtain needs an integrating factor to solve it.

Multiply the equation \* by  $\cos x$ 

Then 
$$\cos x \times \frac{\mathrm{d}z}{\mathrm{d}x} - z \sin x = 4$$

$$\therefore \frac{d}{dx}(z\cos x) = 4$$

$$\therefore z\cos x = \int 4 dx$$

$$= 4x + c$$

$$z = \frac{4x + c}{\cos x}$$

As 
$$y = z^{-\frac{1}{2}}$$
,  $y = \sqrt{\frac{\cos x}{4x + c}}$ 

3 a Given that 
$$z = x^{\frac{1}{2}}$$
,  $x = z^2$  and  $\frac{dx}{dt} = 2z \frac{dz}{dt}$ 

So the equation  $\frac{dx}{dt} + t^2x = t^2x^{\frac{1}{2}}$  becomes

$$2z\frac{\mathrm{d}z}{\mathrm{d}t} + t^2z^2 = t^2z$$

Divide through by 2z:  $\frac{dz}{dt} + \frac{1}{2}t^2z = \frac{1}{2}t^2$ 

**3 b** We wish to solve

$$\frac{\mathrm{d}z}{\mathrm{d}t} + \frac{1}{2}t^2z = \frac{1}{2}t^2$$

The integrating factor is  $e^{\int \frac{1}{2}t^2 dt} = e^{\frac{1}{6}t^3}$ 

$$\therefore e^{\frac{1}{6}t^{3}} \frac{dz}{dt} + \frac{1}{2}t^{2}e^{\frac{1}{6}t^{3}}z = \frac{1}{2}t^{2}e^{\frac{1}{6}t^{3}}$$

$$\therefore \frac{d}{dt}\left(ze^{\frac{1}{6}t^{3}}\right) = \frac{1}{2}t^{2}e^{\frac{1}{6}t^{3}}$$

$$\therefore ze^{\frac{1}{6}t^{3}} = \int \frac{1}{2}t^{2}e^{\frac{1}{6}t^{3}}dt$$

$$= e^{\frac{1}{6}t^{3}} + c$$

$$\therefore z = 1 + ce^{\frac{1}{6}t^{3}}$$
But  $x = z^{2}$   $\therefore$   $x = \left(1 + ce^{\frac{1}{6}t^{3}}\right)^{2}$ 

4 **a** Let 
$$z = y^{-1}$$
, then  $y = z^{-1}$  and  $\frac{dy}{dx} = -z^{-2} \frac{dz}{dx}$   
So  $\frac{dy}{dx} - \frac{1}{x}y = \frac{(x+1)^3}{x}y^2$  becomes
$$-z^{-2} \frac{dz}{dx} - \frac{1}{x}z^{-1} = \frac{(x+1)^3}{x}z^{-2}$$

Multiply through by  $-z^2$ :  $\frac{dz}{dx} + \frac{1}{x}z = -\frac{(x+1)^3}{x}$ 

**4 b** We wish to solve

$$\frac{\mathrm{d}z}{\mathrm{d}x} + \frac{1}{x}z = -\frac{(x+1)^3}{x}$$

The integrating factor is  $e^{\int P dx} = e^{\int \frac{1}{x} dx} = e^{\int \ln x} = x$ 

$$\therefore x \frac{\mathrm{d}z}{\mathrm{d}x} + z = -(x+1)^3$$

i.e. 
$$\frac{d}{dx}(xz) = -(x+1)^3$$

$$\therefore xz = -\int (x+1)^3 dx$$
$$= -\frac{1}{4}(x+1)^4 + c$$

$$\therefore \qquad z = -\frac{1}{4x}(x+1)^4 + \frac{c}{x}$$

$$\therefore \qquad y = \frac{4x}{4c - (x+1)^4}$$

5 a Given that  $z = y^2$ , and so  $y = z^{\frac{1}{2}}$  and  $\frac{dy}{dx} = \frac{1}{2}z^{-\frac{1}{2}}\frac{dz}{dx}$ 

The equation  $2(1+x^2) \frac{dy}{dx} + 2xy = \frac{1}{y}$  becomes

$$2(1+x^2) \times \frac{1}{2}z^{-\frac{1}{2}}\frac{dz}{dx} + 2xz^{\frac{1}{2}} = z^{-\frac{1}{2}}$$

Multiply the equation by  $\frac{z^{\frac{1}{2}}}{1+x^2}$ 

Then 
$$\frac{dz}{dx} + \frac{2x}{1+x^2}z = \frac{1}{1+x^2}$$

**5 b** The integrating factor is  $e^{\int \frac{2x}{1+x^2} dx} = e^{\ln(1+x^2)} = 1+x^2$ 

$$\therefore (1+x^2)\frac{\mathrm{d}z}{\mathrm{d}x} + 2xz = 1$$

$$\therefore \frac{\mathrm{d}}{\mathrm{d}x}[(1+x^2)z] = 1$$

$$\therefore (1+x^2)z = \int 1 \, \mathrm{d}x$$
$$= x + c$$

$$\therefore \qquad z = \frac{x+c}{(1+x^2)}$$

As 
$$y = z^{\frac{1}{2}}$$
,  $y = \sqrt{\frac{x+c}{(1+x^2)}}$ 

**c** When 
$$x = 0$$
,  $y = 2$   $\therefore 2 = \sqrt{c} \Rightarrow c = 4$ 

$$\therefore y = \sqrt{\frac{x+4}{1+x^2}}$$

6 Given 
$$z = y^{-(n-1)}$$

$$\therefore \qquad y = z^{-\frac{1}{(n-1)}}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-1}{n-1} z^{-\frac{1}{n-1}-1} \frac{\mathrm{d}z}{\mathrm{d}x}$$

$$= \frac{-1}{n-1} z^{-\frac{n}{n-1}} \frac{\mathrm{d}z}{\mathrm{d}x}$$

$$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} + Py = Qy^n \text{ becomes}$$

$$\frac{-1}{n-1}z^{-\frac{n}{n-1}}\frac{\mathrm{d}z}{\mathrm{d}x} + Pz^{-\frac{1}{n-1}} = Qz^{-\frac{n}{n-1}}$$

Multiply each term by  $-(n-1)z^{\frac{n}{n-1}}$ 

Then 
$$\frac{dz}{dx} - P(n-1)z^{\frac{n}{n-1}}z^{-\frac{1}{n-1}} = -Q(n-1)z^{\frac{n}{n-1}}z^{-\frac{n}{n-1}}$$

i.e. 
$$\frac{\mathrm{d}z}{\mathrm{d}z} - P(n-1)z = -Q(n-1)$$

Rearrange the given substitution to

- 7 a Given u = y + 2x and so y = u 2x and  $\frac{dy}{dx} = \frac{du}{dx} 2$ 
  - ∴ the differential equation  $\frac{dy}{dx} = -\frac{(1+2y+4x)}{1+y+2x}$  becomes

 $\frac{du}{dx} - 2 = -\frac{1+2u}{1+u}$   $\therefore \frac{du}{dx} = \frac{-(1+2u)+2(1+u)}{1+u}$   $\therefore \frac{du}{dx} = \frac{1}{1+u}$   $\frac{du}{dx} = \frac{1}{1+u}$   $\frac{du}{dx} = \frac{1}{1+u}$ 

**b** Separate the variables

$$\int (1+u) du = \int 1 \times dx$$

$$\therefore \qquad u + \frac{u^2}{2} = x + c, \text{ where } c \text{ is constant}$$
And 
$$(y+2x) + \frac{(y+2x)^2}{2} = x + c$$

$$2y + 4x + y^2 + 4xy + 4x^2 = 2x + 2c$$
i.e.  $4x^2 + 4xy + y^2 + 2y + 2x = k$ , where  $k = 2c$ 

## Challenge

Substitute 
$$y = \frac{1}{v}, \frac{dy}{dx} = -\frac{1}{v^2} \frac{dv}{dx}$$

Differential equation becomes

$$x^{2} \left( -\frac{1}{v^{2}} \frac{dv}{dx} \right) - \frac{x}{v} = \frac{1}{v^{2}}$$
$$\Rightarrow x \frac{dv}{dx} + v = -\frac{1}{x}$$

Integrate both sides to get  $xv = -\ln x + C$ 

Substitute 
$$v = \frac{1}{y}$$
 to get  $y = \frac{-x}{\ln x + C}$