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Reducible differential equations 9C 

1  a   If x ut= then 
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     b  Solve the differential equation in u and t to 

get 
1

2
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2
 = 
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2
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 + c, and then use u = 
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2
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The particular solution is x = 
23 6t t +   

 

     c   The function increases without limit so the 

displacement gets very large. 
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b  Differential equation in z and t solves to 

give 3

2
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A
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t
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If v = 2 for t = 1, then z = 2,  

and A = |−15| × 1 = 15 
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The particular solution is 
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c  
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3 2 2

So substituting t=2 we obtain

velocity = 2.6684... 2.668

acceleration = 0.63199... 0.632

dv t t t

dt
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So equation becomes 
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  Rearranging terms gives 
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  which simplifies to 
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b  Auxiliary equation has roots 2 and −1, so 

the complementary function is  

v = Ae
2t

 + Be
−t

. To find the particular 

integral, try v = λte
2t

 

Then 
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Letting 
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λ =  gives a particular integral of 
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 Therefore the general solution is 
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4 a  
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So differential equation becomes 
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which rearranges to the required equation.  
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4   b  
2The auxiliary equation is 1 0m + =  

2

2 2

So the general solution is

cos sin ( )

where ( ) is a particular integral

Let ( )

( ) 2 , ( ) 2

Then the equation becomes
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So 1, 0, 2

So the general solution 
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⇒ = + + −

  

 

c   As t gets large, x gets large; the spring will 

reach its elastic limit and/or break. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


