Trigonometric identities and equations 10A

1 a

g

b

h

 \mathbf{c}

i

d

j

e

2 a

f

2 b

c

d

2 e

3 a

$$\sin\left(-90\right)\circ = \frac{-r}{r} = -1$$

b

$$\sin 450^\circ = \frac{r}{r} = 1$$

3 c

$$\sin 540^\circ = \frac{0}{r} = 0$$

d

$$\sin\left(-450\right)^{\circ} = \frac{-r}{r} = -1$$

 \mathbf{e}

$$\cos\left(-180\right)^{\circ} = \frac{-r}{r} = -1$$

f

$$\cos\left(-270\right)^{\circ} = \frac{0}{r} = 0$$

g

$$\cos 270^\circ = \frac{0}{r} = 0$$

h

$$\cos 810^{\circ} = \frac{0}{r} = 0$$

3 i

$$\tan 360^{\circ} = \frac{0}{r} = 0$$

j

$$\tan(-180)^{\circ} = \frac{0}{-r} = 0$$

4 a

 60° is the acute angle. In the third quadrant sin is - ve. So $\sin 240^{\circ} = -\sin 60^{\circ}$ 4 b

80° is the acute angle. In the fourth quadrant $\sin is - ve$. So $\sin(-80)^\circ = -\sin 80^\circ$

c

20° is the acute angle. In the second quadrant sin is + ve. So $\sin(-200)^\circ = +\sin 20^\circ$

d

60° is the acute angle. In the fourth quadrant sin is -ve. So $\sin 300^\circ = -\sin 60^\circ$ 4 e

80° is the acute angle.

In the second quadrant $\sin is + ve$.

So $\sin 460^\circ = +\sin 80^\circ$

f

70° is the acute angle.

In the second quadrant \cos is - ve.

So $\cos 110^{\circ} = -\cos 70^{\circ}$

g

80° is the acute angle.

In the third quadrant $\cos is - ve$.

So $\cos 260^{\circ} = -\cos 80^{\circ}$

h

50° is the acute angle.

In the fourth quadrant $\cos is + ve$.

So
$$\cos(-50)^{\circ} = +\cos 50^{\circ}$$

i

20° is the acute angle.

In the second quadrant $\cos is - ve$.

So
$$\cos(-200)^{\circ} = -\cos 20^{\circ}$$

j

5° is the acute angle.

In the third quadrant $\cos is - ve$.

So $\cos 545^{\circ} = -\cos 5^{\circ}$

4 k

80° is the acute angle. In the second quadrant tan is – ve.

So $\tan 100^{\circ} = -\tan 80^{\circ}$

l

35° is the acute angle.

In the fourth quadrant tan is -ve.

So $\tan 325^{\circ} = -\tan 35^{\circ}$

m

30° is the acute angle.

In the fourth quadrant tan is -ve.

So
$$\tan(-30)^{\circ} = -\tan 30^{\circ}$$

n

5° is the acute angle.

In the third quadrant tan is + ve.

So
$$\tan(-175)^\circ = +\tan 5^\circ$$

0

60° is the acute angle.

In the third quadrant $tan\ is\ +ve$.

So $\tan 600^{\circ} = + \tan 60^{\circ}$

5 a

 $\sin is - ve in this quadrant.$

So
$$\sin(-\theta) = -\sin\theta$$

5 b

sin is – ve in this quadrant. So $\sin(180^{\circ} + \theta) = -\sin \theta$

 \mathbf{c}

sin is – ve in this quadrant. So $\sin(360^{\circ} - \theta) = -\sin \theta$

d

sin is + ve in this quadrant.

So
$$\sin - (180^\circ + \theta) = +\sin \theta$$

 \mathbf{e}

sin is – ve in this quadrant. So $\sin(-180^{\circ} + \theta) = -\sin \theta$ f

sin is + ve in this quadrant. So $\sin(-360^{\circ} + \theta) = +\sin\theta$

g

sin is – ve in this quadrant. So $\sin(540^{\circ} + \theta) = -\sin \theta$

h

sin is + ve in this quadrant.

So
$$\sin(720^{\circ} - \theta) = -\sin\theta$$

i $\theta + 720^{\circ}$ is in the first quadrant with θ to the horizontal.

So
$$\sin(\theta + 720^\circ) = +\sin\theta$$

6 a $180^{\circ} - \theta$ is in the second quadrant where cos is -ve, and the angle to the horizontal is θ .

So
$$\cos(180^{\circ} - \theta) = -\cos\theta$$

6 b $180^{\circ} + \theta$ is in the third quadrant, at θ to the horizontal.

So $\cos(180^{\circ} + \theta) = -\cos\theta$

c $-\theta$ is in the fourth quadrant, at θ to the horizontal.

So $\cos(-\theta) = +\cos\theta$

d $-(180^{\circ} - \theta)$ is in the third quadrant, at θ to the horizontal.

So $\cos -(180^{\circ} - \theta) = -\cos\theta$

e $\theta - 360^{\circ}$ is in the first quadrant, at θ to the horizontal.

So $\cos(\theta - 360^{\circ}) = \cos\theta$

f θ – 540° is in the third quadrant, at θ to the horizontal.

So $\cos(\theta - 540^{\circ}) = -\cos\theta$

- **g** $-\theta$ is in the fourth quadrant. So $\tan(-\theta) = -\tan\theta$
- **h** $(180^{\circ} \theta)$ is in the second quadrant. So $\tan(180^{\circ} - \theta) = -\tan\theta$
- i $(180^{\circ} + \theta)$ is in the third quadrant. So $\tan(180^{\circ} + \theta) = +\tan\theta$
- **j** $(-180^{\circ} + \theta)$ is in the third quadrant. So $\tan(-180^{\circ} + \theta) = +\tan\theta$
- **k** $(540^{\circ} \theta)$ is in the second quadrant. So $\tan(540^{\circ} - \theta) = -\tan\theta$
- 1 $(\theta 360^{\circ})$ is in the first quadrant. So $\tan(\theta - 360^{\circ}) = +\tan\theta$

Challenge

a Diagram showing the positions of θ and $(180^{\circ} - \theta)$ on the unit circle:

From the diagram, $\sin \theta = \alpha$ and $\sin(180^{\circ} - \theta) = \alpha$ so $\sin \theta = \sin(180^{\circ} - \theta)$

b Diagram showing the positions of $-\theta$ and θ on the unit circle:

From the diagram, $\cos \theta = b$ and $\cos(-\theta) = b$ so $\cos \theta = \cos(-\theta)$

c Diagram showing the positions of θ and $(180^{\circ} - \theta)$ on the unit circle:

From the diagram, $\tan \theta = \frac{a}{b}$

and $\tan(180^{\circ} - \theta) = -\frac{a}{b}$ so $\tan(180^{\circ} - \theta) = -\tan(\theta)$