Trigonometric identities and equations 10D

- 1 a Consider $\tan x = -2$ $x = \tan^{-1} (-2)$ $= 63.4^{\circ} (3 \text{ s.f.})$ in the first quadrant The principal solution marked by *A* in the diagram is $180^{\circ} - 63.4^{\circ} = 116.6^{\circ}$
 - **b** The solutions between 0° and 360°: $-63.4^{\circ} + 180^{\circ} = 116.6^{\circ}$ $-63.4^{\circ} + 360^{\circ} = 296.6^{\circ}$
- 2 a $\cos x = 0.4$ $x = \cos^{-1} (0.4)$ = 66.4 (3 s.f.)
 - **b** $360^{\circ} 66.4^{\circ} = 293.6^{\circ}$ $180^{\circ} - 66.4^{\circ} = 113.6^{\circ}$ $180^{\circ} + 66.4^{\circ} = 246.4^{\circ}$ $x = 66.4^{\circ}, 113.6^{\circ}, 246.4^{\circ} \text{ and } 293.6^{\circ}$
- 3 a Using the graph of $y = \sin \theta$ $\sin \theta = -1$ when $\theta = 270^{\circ}$
 - **b** $\tan \theta = \sqrt{3}$ The calculator solution is $60^{\circ} (\tan^{-1} \sqrt{3})$ and, as $\tan \theta$ is +ve, θ lies in the first and third quadrants. $\theta = 60^{\circ}$ and $(180^{\circ} + 60^{\circ}) = 60^{\circ}$, 240°
 - c $\cos \theta = \frac{1}{2}$ The calculator solution is 60° and as $\cos \theta$ is +ve, θ lies in the first and fourth quadrants.
 - $\theta = 60^{\circ} \text{ and } (360^{\circ} 60^{\circ}) = 60^{\circ}, 300^{\circ}$
 - **d** $\sin\theta = \sin 15^\circ$

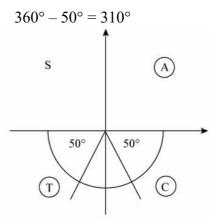
The acute angle satisfying the equation is $\theta = 15^{\circ}$. As $\sin \theta$ is +ve, θ lies in the 1st and 2nd

quadrants, so

 $\theta = 15^{\circ}$ and $(180^{\circ} - 15^{\circ}) = 15^{\circ}, 165^{\circ}$

e A first solution is $\cos^{-1}(-\cos 40^\circ) = 140^\circ$ A second solution of $\cos \theta = k$ is $360^\circ - 1$ st solution.

- 3 e So second solution is 220°.(Use the quadrant diagram as a check.)
 - f A first solution is $\tan^{-1}(-1) = -45^{\circ}$ Use the quadrant diagram, noting that as tan is – ve, solutions are in the 2nd and 4th quadrants. $(-45^{\circ} \text{ is not in the given interval.})$ So solutions are 135° and 315°.
 - **g** From the graph of $y = \cos \theta$ $\cos \theta = 0$ when $\theta = 90^\circ$, 270°
 - **h** $\sin \theta = -0.766$ $\sin^{-1}(-0.766) = -50^{\circ}$



From the diagram, the second solution is $180^{\circ} + 50^{\circ} = 230^{\circ}$. $\theta = 230^{\circ}, 310^{\circ}$

4 a $\sin\theta = \frac{5}{7}$

The first solution is $\sin^{-1}(\frac{5}{7}) = 45.6^{\circ}$ The second solution is $180^{\circ} - 45.6^{\circ} = 134.4^{\circ}$

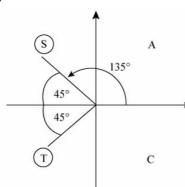
b $\cos\theta = -\frac{\sqrt{2}}{2}$

Calculator solution is 135°. As $\cos \theta$ is $- \operatorname{ve}, \theta$ is in the second and third quadrants.

Pure Mathematics Year 1/AS

SolutionBank

4 b



Solutions are 135° and 225° (135° and $360^{\circ}-135^{\circ}$).

c Calculator solution is $\cos^{-1}\left(-\frac{2}{3}\right) = 131.8^{\circ} (1 \text{ d.p.})$ Second solution is $360^{\circ} - 131.8^{\circ} = 228.2^{\circ}$

d
$$\sin \theta = -\frac{3}{4}$$

 $\theta = -48.6^{\circ}$
 $\theta = 360^{\circ} - 48.6^{\circ}, \text{ or } 180^{\circ} + 48.6^{\circ}$
 $= 311.4^{\circ}, 228.6^{\circ}$

$$e \quad \tan \theta = \frac{1}{7}$$
$$\theta = 8.13^{\circ} \text{ or } 188^{\circ}$$

$$f \quad \tan \theta = \frac{15}{8}$$
$$\theta = 61.9^{\circ} \text{ or } 242^{\circ}$$

g $\tan \theta = -\frac{11}{3}$ $\theta = -74.7^{\circ}$ $\theta = 105.3^{\circ} \text{ or } 285^{\circ}$

 $\mathbf{h} \quad \cos\theta = \frac{\sqrt{5}}{3}$ $\theta = 41.8^{\circ}, 318^{\circ}$

5 a $\sqrt{3}\sin\theta = \cos\theta$ So dividing both sides by $\sqrt{3}\cos\theta$ $\tan\theta = \frac{1}{\sqrt{3}}$

- 5 a Calculator solution is 30° . As $\tan \theta$ is + ve, θ is in the first and third quadrants. Solutions are 30° , 210° $(30^{\circ} \text{ and } 180^{\circ} + 30^{\circ})$.
 - **b** $\sin \theta + \cos \theta = 0$ So $\sin \theta = -\cos \theta \Rightarrow \tan \theta = -1$ Calculator solution (-45°) is not in the given interval. As $\tan \theta$ is – ve, θ is in the second and fourth quadrants. Solutions are 135° and 315° $(180^{\circ} + \tan^{-1}(-1), 360^{\circ} + \tan^{-1}(-1))$.

c
$$3\sin\theta = 4\cos\theta$$

 $\tan\theta = \frac{4}{3}$
 $\theta = 53.1^{\circ} \text{ or } 233^{\circ}$

d
$$2\sin\theta - 3\cos\theta = 0$$

 $\tan\theta = \frac{3}{2}$
 $\theta = 56.3^{\circ} \text{ or } 236^{\circ}$

e
$$\sqrt{2}\sin\theta = 2\cos\theta$$

 $\tan\theta = \frac{2}{\sqrt{2}} = \sqrt{2}$
 $\theta = 54.7^\circ \text{ or } 235^\circ$

f
$$\sqrt{5}\sin\theta + \sqrt{2}\cos\theta = 0$$

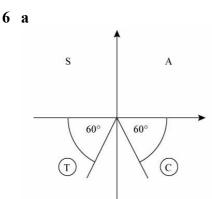
 $\sqrt{5}\tan\theta + \sqrt{2} = 0$
 $\tan\theta = -\frac{\sqrt{2}}{\sqrt{5}}$
 $\theta = -32.3^{\circ} \theta > 0$
 $\theta = 148^{\circ} \text{ or } 328^{\circ}$

6 a Calculator solution of $\sin x^{\circ} = -\frac{\sqrt{3}}{2}$ is $x = -60^{\circ}$ As $\sin x^{\circ}$ is – ve. x is in the

As $\sin x^{\circ}$ is – ve, x is in the third and fourth quadrants.

Pure Mathematics Year 1/AS

SolutionBank



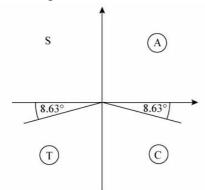
Read off all solutions in the interval $-180^\circ \le x \le 540^\circ$. $x = -120^\circ, -60^\circ, 240^\circ, 300^\circ$

b $2\sin x^{\circ} = -0.3$ $\sin x^{\circ} = -0.15$

First solution is $x = \sin^{-1}(-0.15)$

$$=-8.63^{\circ}(3 \text{ s.f.})$$

As $\sin x^{\circ}$ is – ve, x is in the third and fourth quadrants.

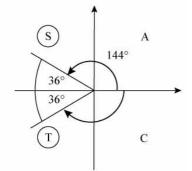


Read off all solutions in the interval $-180^\circ \le x \le 180^\circ$. $x = -171.37^\circ$, -8.63° $x = -171^\circ$, -8.63° (3 s.f.)

c $\cos x^{\circ} = -0.809$

Calculator solution is 144° (3 s.f.)

As $\cos x^{\circ}$ is – ve, x is in the second and third quadrants.



- c Read off all the solutions in the interval $-180^\circ \le x \le 180^\circ$. $x = -144^\circ, +144^\circ$ *Note*: Here solutions are $\cos^{-1}(-0.809)$ and $(360^\circ - \cos^{-1}(-0.809))$.
- **d** $\cos x^\circ = 0.84$ Calculator solution is 32.9° (3 s.f.)

(not in interval).

As $\cos x^\circ$ is + ve, x is in the first and fourth quadrants.



Read off all the solutions in the interval $-360^{\circ} < x < 0^{\circ}$.

 $x = -327^{\circ}, -32.9^{\circ} (3 \text{ s.f.})$

(*Note*: Here solutions are $\cos^{-1}(0.84) - 360^{\circ}$ and

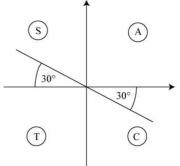
$$(360^{\circ} - \cos^{-1}(0.84)) - 360^{\circ})$$

e $\tan x^\circ = -\frac{\sqrt{3}}{3}$

Calculator solution is

 $\tan^{-1}\left(-\frac{\sqrt{3}}{3}\right) = -30^{\circ}$ (not in interval)

As $\tan x^\circ$ is -ve, *x* is in the second and fourth quadrants.



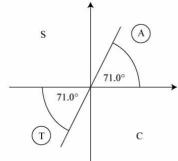
Read off all the solutions in the interval $0^{\circ} \le x \le 720^{\circ}$. $x = 150^{\circ}, 330^{\circ}, 510^{\circ}, 690^{\circ}$ 6 e Note: Here solutions are

$$\tan^{-1}\left(-\frac{\sqrt{3}}{3}\right) + 180^{\circ}, \ \tan^{-1}\left(-\frac{\sqrt{3}}{3}\right) + 360^{\circ},$$
$$\tan^{-1}\left(-\frac{\sqrt{3}}{3}\right) + 540^{\circ}, \ \cos^{-1}\left(-\frac{\sqrt{3}}{3}\right) + 720^{\circ}.$$

f $\tan x^\circ = 2.90$ Calculator solution is $\tan^{-1}(2.90) = 71.0^\circ(3 \text{ s.f.})$

(not in interval).

As $\tan x^\circ$ is +ve, x is in the first and third quadrants.

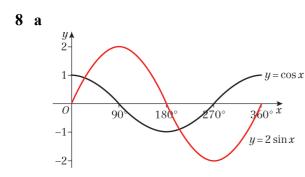


Read off all solutions in the interval $80^{\circ} \le x \le 440^{\circ}$. $x = 251^{\circ}, 431^{\circ}$ (*Note*: Here solutions are $\tan^{-1}(2.90) + 180^{\circ}, \tan^{-1}(2.90) + 360^{\circ}$.)

- 7 **a** It should be $\tan x = \frac{2}{3}$, not $\frac{3}{2}$.
 - **b** Squaring both sides creates extra solutions.

c
$$\tan x = \frac{2}{3}$$

 $x = 33.7^{\circ} \text{ or } x = -146.3^{\circ}$



8 b The graphs intersect at 2 points in the given range so there are 2 solutions.

c
$$2 \sin x = \cos x$$

 $\frac{\sin x}{\cos x} = \frac{1}{2}$
 $\tan x = \frac{1}{2}$
 $x = 26.6^{\circ}$
 $x = 26.6^{\circ} + 180^{\circ} = 206.6^{\circ}$
 $x = 26.6^{\circ}$ or 206.6°

9

 $\tan \theta = \pm 3$ When $\tan \theta = 3$, $\theta = 71.6^{\circ}$ or $\theta = 71.6^{\circ} + 180^{\circ} = 251.6^{\circ}$ When $\tan \theta = -3$, $\theta = -71.6^{\circ}$ or $\theta = -71.6^{\circ} + 180^{\circ} = 108.4^{\circ}$ or $\theta = 108.4^{\circ} + 180^{\circ} = 288.4^{\circ}$ $\theta = 71.6^{\circ}$, 108.4° , 251.6° or 288.4°

10 a $4\sin^2 x - 3\cos^2 x = 2$ $4\sin^2 x - 3(1 - \sin^2 x) = 2$ $4\sin^2 x - 3 + 3\sin^2 x = 2$ $7\sin^2 x = 5$

b
$$\sin^2 x = \frac{5}{7}$$

 $\sin x = \pm \sqrt{\frac{5}{7}}$
 $x = 57.7^\circ \text{ or } -57.7^\circ$
 $x = 180^\circ - 57.7^\circ = 122.3^\circ$
 $x = 180^\circ + 57.7^\circ = 237.7^\circ$
 $x = 360^\circ - 57.7^\circ = 302.3^\circ$
 $x = 57.7^\circ, 122.3^\circ, 237.7^\circ \text{ or } 302.3^\circ$

- 11 a $2\sin^2 x + 5\cos^2 x = 1$ $2\sin^2 x + 5(1 - \sin^2 x) = 1$ $2\sin^2 x + 5 - 5\sin^2 x = 1$ $3\sin^2 x = 4$
 - **b** Using $3 \sin^2 x = 4$ $\sin^2 x = \frac{4}{3}$

 $\sin x > 1$, therefore there are no solutions.