Trigonometric identities and equations 10E

- **1** a $\sin 4\theta = 0$ $0^{\circ} \le \theta \le 360^{\circ}$ Let $X = 4\theta$ so $0^{\circ} \le X \le 1440^{\circ}$ Solve $\sin X = 0$ in the interval $0^{\circ} \le X \le 1440^{\circ}$ From the graph of $y = \sin X$, $\sin X = 0$ where $X = 0^{\circ}$, 180° , 360° , 540° , 720° , 900° , 1080° , 1260° , 1440° $\theta = \frac{X}{4}$ $= 0^{\circ}$, 45° , 90° , 135° , 180° , 225° , 270° , 315° , 360°
 - **b** $\cos 3\theta = -1$ $0^{\circ} \le \theta \le 360^{\circ}$ Let $X = 3\theta$ so $0^{\circ} \le X \le 1080^{\circ}$ Solve $\cos X = 0$ in the interval $0^{\circ} \le X \le 1080^{\circ}$ From the graph of $y = \cos X$, $\cos X = -1$ where $X = 180^{\circ}$, 540° , 900° , $\theta = \frac{X}{3}$ $= 60^{\circ}$, 180° , 300°
 - c $\tan 2\theta = 1$ $0^{\circ} \le \theta \le 360^{\circ}$ Let $X = 2\theta$ Solve $\tan X = 1$ in the interval $0^{\circ} \le X \le 720^{\circ}$. A solution is $X = \tan^{-1}(1) = 45^{\circ}$ As $\tan X$ is +ve, X is in the first and third quadrants. So $X = 45^{\circ}$, 225° , 405° , 585° $\theta = \frac{X}{2}$ $= 22\frac{1}{2}^{\circ}$, $112\frac{1}{2}^{\circ}$, $202\frac{1}{2}^{\circ}$, $292\frac{1}{2}^{\circ}$ d $\cos 2\theta = \frac{1}{2}$ $0 \le \theta \le 360^{\circ}$ Let $X = 2\theta$ Solve $\cos X = \frac{1}{2}$ in the interval $0 \le X \le 720^{\circ}$. A solution is $X = \cos^{-1}\left(\frac{1}{2}\right) = 60^{\circ}$

As $\cos X$ is +ve, X is in the first and fourth quadrants. So $X = 60^\circ$, 300° , 420° , 660° **d** $\theta = \frac{X}{2}$ = 30°, 150°, 210°, 330° e $\tan\frac{1}{2}\theta = -\frac{1}{\sqrt{3}}$ $0 \le \theta \le 360^\circ$ Let $X = \frac{1}{2}\theta$ Solve $\tan X = -\frac{1}{\sqrt{3}}$ in the interval $0^\circ \le X \le 180^\circ$. A solution is $X = \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) = -30^{\circ}$ (This is not in the interval.) As $\tan X$ is -ve, X is in the second and fourth quadrants. S A 30° 30° (c)Т Read off solution in the interval $0^{\circ} < X < 180^{\circ}$. $X = 150^{\circ}$ So $\theta = 2X$ $=300^{\circ}$ $\mathbf{f} \quad \sin(-\theta) = \frac{1}{\sqrt{2}} \quad 0^\circ \le \theta \le 360^\circ$ Let $X = -\theta$ Solve $\sin X = \frac{1}{\sqrt{2}}$ in the interval $0^\circ \le X \le 360^\circ$. A solution is $X = \sin^{-1}\left(\frac{1}{\sqrt{2}}\right) = 45^{\circ}$ As $\sin X$ is +ve, X is in the first and second quadrants. $X = -315^{\circ}, -225^{\circ}$ So $\theta = -X$ = 225°, 315°

Pure Mathematics Year 1/AS

SolutionBank

2 **a** $\tan(45^\circ - \theta) = -1$ $0^\circ \le \theta \le 360^\circ$ Let $X = 45^\circ - \theta$ so $0^\circ \ge -\theta \ge -360^\circ$ Solve $\tan X = -1$ in the interval $45^\circ \ge X \ge -315^\circ$ A solution is $X = \tan^{-1}(-1) = -45^\circ$ As $\tan X$ is -ve, X is in the second and fourth quadrants.

$$X = -225^{\circ}, -45^{\circ}$$

So $\theta = 45^{\circ} - X = 90^{\circ}, 270^{\circ}$

b $2\sin(\theta - 20^\circ) = 1$

So $\sin(\theta - 20^\circ) = \frac{1}{2}$ $0^\circ \le \theta \le 360^\circ$ Let $X = \theta - 20^\circ$ Solve $\sin X = \frac{1}{2}$ in the interval $-20^\circ \le X \le 340^\circ$ A solution is $X = \sin^{-1}\left(\frac{1}{2}\right) = 30^\circ$

As $\sin X$ is +ve, solutions are in the first and second quadrants.

 $X = 30^{\circ}, 150^{\circ}$ So $\theta = X + 20^{\circ}$ $= 50^{\circ}, 170^{\circ}$

c Solve $\tan X = \sqrt{3}$ where $X = (\theta + 75^{\circ})$. The interval for X is $75^{\circ} \le X \le 435^{\circ}$ One solution is $\tan^{-1}(\sqrt{3}) = 60^{\circ}$

(This is not in the interval) As $\tan X$ is +ve, solutions are in the first and third quadrants.

$$X = 240^{\circ}, 420^{\circ}$$

So $\theta = X - 75^{\circ}$
= 165°, 345

С

d Solve $\sin X = \frac{\sqrt{3}}{2}$ where $X = (\theta - 10^\circ)$. The interval for X is $-10^\circ < X \le 350^\circ$

0

First solution is $\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) = -60^{\circ}$

(This is not in the interval) As $\sin X$ is -ve, X is in the third and fourth quadrants.

Read off solutions in the interval $-10^{\circ} < X \le 350^{\circ}$ $X = 240^{\circ}, 300^{\circ}$ So $\theta = X + 10^{\circ}$ $= 250^{\circ}, 310^{\circ}$

2 e Solve $\cos X^{\circ} = -1$ where $X = (50^{\circ} + 2\theta)$. The interval for X is $2(0) + 50^{\circ} \le X \le 2(360^{\circ}) + 50^{\circ}$ i.e. $50^{\circ} \le X \le 770^{\circ}$ First solution is $\cos^{-1}(-1) = 180^{\circ}$ Second solution in interval $= 180^{\circ} + 360^{\circ} = 540^{\circ}$ $\theta = \frac{X - 50^{\circ}}{2}$ So $\theta = 65^{\circ}$, 245°

Pure Mathematics Year 1/AS

SolutionBank

- 2 **f** Solve $\tan X^\circ = -0.51$ where $X = (3\theta + 25^\circ)$. The interval for X is $3(-90^\circ) + 25 \le X \le 3(180^\circ) + 25^\circ$ i.e. $-245^\circ \le X \le 565^\circ$ First solution is $\tan^{-1}(-0.51) = -27.0^\circ$ Other solutions $= -27.0^\circ \pm n180^\circ$, where *n* is an integer Solution in range are therefore: $X = -207^\circ, -27.0^\circ, 153^\circ, 333^\circ$ and 513° $\theta = \frac{X - 25^\circ}{3}$ So $\theta = -77.3^\circ, -17.3^\circ, 42.7^\circ, 103^\circ, 163^\circ$
- **3** a Let $X = 3\theta$

So
$$3 \sin X = 2 \cos X$$

 $\frac{\sin X}{\cos X} = \frac{2}{3}$
 $\tan X = \frac{2}{3}$
As $X = 3\theta$, then as $0^{\circ} \le \theta \le 180^{\circ}$
So $3 \times 0^{\circ} \le X \le 3 \times 180^{\circ}$
So the interval for X is $0^{\circ} \le X \le 540^{\circ}$.
 $X = 33.7^{\circ}, 213.7^{\circ}, 393.7^{\circ}$
i.e. $3\theta = 33.7^{\circ}, 213.7^{\circ}, 393.7^{\circ}$
So $\theta = 11.2^{\circ}, 71.2^{\circ}, 131.2^{\circ}$

b Let $X = \theta + 45^{\circ}$ So $4 \sin X = 5 \cos X$ $\frac{\sin X}{\cos X} = \frac{5}{4}$ $\tan X = \frac{5}{4}$ As $X = \theta + 45^{\circ}$, then as $0^{\circ} \le \theta \le 450^{\circ}$ so $0 + 45 \le X \le 450^{\circ} + 45$ So the interval for X is $45^{\circ} \le X \le 495^{\circ}$. $X = 51.3^{\circ}, 231.3^{\circ}, 411.3^{\circ}$ i.e. $\theta + 45^{\circ} = 51.3^{\circ}, 231.3^{\circ}, 411.3^{\circ}$ So $\theta = 6.3^{\circ}, 186.3^{\circ}, 366.3^{\circ}$

c Let X = 2x $2 \sin X - 7 \cos X = 0$ $2 \sin X = 7 \cos X$ $\frac{\sin X}{\cos X} = \frac{7}{2}$ $\tan X = \frac{7}{2}$ As X = 2x, then as $0^{\circ} \le x \le 180^{\circ}$ So $2 \times 0^{\circ} \le X \le 2 \times 180^{\circ}$

- **c** So the interval for *X* is $0^{\circ} \le X \le 360^{\circ}$. $X = 74.05^{\circ}, 254.05^{\circ}$ i.e. $2x = 74.05^{\circ}, 254.05^{\circ}$ So $x = 37.0^{\circ}, 127.0^{\circ}$
- **d** Let $X = \theta 60^{\circ}$ So $\sqrt{3} \sin X + \cos X = 0$ $\sqrt{3} \sin X = -\cos X$ $\frac{\sin X}{\cos X} = \frac{-1}{\sqrt{3}}$ tan $X = \frac{-1}{\sqrt{3}}$ As $X = \theta - 60^{\circ}$, then as $-180^{\circ} \le \theta \le 180^{\circ}$ So $-180^{\circ} - 60 \le X \le 180^{\circ} - 60$ So the interval for X is $-240^{\circ} \le X \le 120^{\circ}$. $X = -30^{\circ}, -210^{\circ}$ i.e. $\theta - 60^{\circ} = -210^{\circ}, -30^{\circ}$ So $\theta = -150^{\circ}, 30^{\circ}$
- 4 a Let $X = x + 20^{\circ}$ So sin $X = \frac{1}{2}$ As $X = x + 20^{\circ}$, then as $0 \le x \le 180^{\circ}$ So $0 + 20 \le x \le 180^{\circ} + 20$ So the interval for X is $20^{\circ} \le X \le 200^{\circ}$. $X = 30^{\circ}, 150^{\circ}$ i.e. $x + 20^{\circ} = 30^{\circ}, 150^{\circ}$ So $x = 10^{\circ}, 130^{\circ}$
 - **b** Let X = 2xSo $\cos X = -0.8$ As X = 2x, then as $0 \le x \le 180^{\circ}$ So $2 \times 0 \le X \le 2 \times 180^{\circ}$ So the interval for X is $0 \le X \le 360^{\circ}$ $X = 143.13^{\circ}, 216.87^{\circ}$ i.e. $2x = 143.13^{\circ}, 216.87^{\circ}$ So $x = 71.6^{\circ}, 108.4^{\circ}$

Pure Mathematics Year 1/AS

- **5** c Let $X = x + 60^{\circ}$ So sin X = 0.55As $X = x + 60^{\circ}$, then as $0^{\circ} \le x \le 360^{\circ}$ So $0^{\circ} + 60^{\circ} \le x \le 360^{\circ} + 60^{\circ}$ So the interval for X is $60^{\circ} \le X \le 420^{\circ}$. $X = 33.4^{\circ}$, 146.6° , 393.4° i.e. $x + 60^{\circ} = 33.4^{\circ}$, 146.6° , 393.4° So $x = 86.6^{\circ}$, 333.4°
- **6 a** $4\sin x = 3\cos x$
 - $\frac{\sin x}{\cos x} = \frac{3}{4}$ $\tan x = \frac{3}{4}$
 - **b** Let $X = 2\theta$

So
$$\tan X = \frac{3}{4}$$

4 As $X = 2\theta$, then as $0^{\circ} \le \theta \le 360^{\circ}$ So $2 \times 0^{\circ} \le X \le 2 \times 360^{\circ}$ So the interval for X is $0^{\circ} \le X \le 720^{\circ}$. $X = 36.87^{\circ}, 216.87^{\circ}, 396.87^{\circ}, 576.87^{\circ}$ i.e. $2\theta = 36.87^{\circ}, 216.87^{\circ}, 396.87^{\circ}, 576.87^{\circ}$ So $\theta = 18.4^{\circ}, 108.4^{\circ}, 198.4^{\circ}, 288.4^{\circ}$

7 **a**
$$\tan 60k^\circ = -\frac{1}{\sqrt{3}}$$

Let $X = 60k^\circ$
So $\tan X = -\frac{1}{\sqrt{3}}$
 $X = -30^\circ, 150^\circ, 330^\circ,$
I.e. $60k^\circ = -30^\circ, 150^\circ, 330^\circ,$
 $k = -0.5, 2.5,$
 $k > 0$ so $k = 2.5$

b No because when $X = 330^{\circ}$, k = 5.5. As *k* increases, the period of the tan graph increases. 8 Let $X = 3x - 45^{\circ}$ So sin $X = \frac{1}{2}$ As $X = 3x - 45^{\circ}$, then as $0^{\circ} \le x \le 180^{\circ}$ So $3 \times 0^{\circ} - 45^{\circ} \le x \le 3 \times 180^{\circ} - 45^{\circ}$ So the interval for X is $-45^{\circ} \le X \le 495^{\circ}$. $X = 30^{\circ}$, 150° , 390° i.e. $3x - 45^{\circ} = 30^{\circ}$, 150° , 390° So $x = 25^{\circ}$, 65° , 145°