Exponentials and logarithms 14B

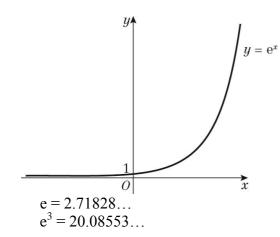
1 a 2.71828

b 54.59815

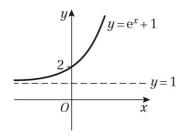
c 0.00005

d 1.22140

2 a

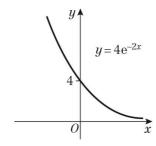


3 a $y = e^x + 1$



This is the normal $y = e^x$ 'moved up' (translated) 1 unit

b $y = 4e^{-2x}$



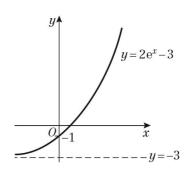
3 b $x = 0 \Rightarrow y = 4$

As $x \to -\infty$, $y \to \infty$

As $x \to \infty$, $y \to 0$

This is an exponential decay type of graph.

 $\mathbf{c} \quad \mathbf{y} = 2\mathbf{e}^x - 3$

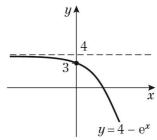


 $x = 0 \Rightarrow y = 2 \times 1 - 3 = -1$

As $x \to \infty$, $y \to \infty$

As $x \to -\infty$, $y \to 2 \times 0 - 3 = -3$

d $y = 4 - e^x$



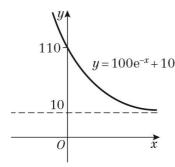
 $x = 0 \Rightarrow y = 4 - 1 = 3$

As $x \to \infty$, $y \to 4 - \infty$, i.e. $y \to -\infty$

As $x \to -\infty$, $y \to 4 - 0 = 4$

e $y = 6 + 10e^{\frac{1}{2}x}$ $y = 6 + 10e^{\frac{1}{2}x}$ $y = 6 + 10e^{\frac{1}{2}x}$

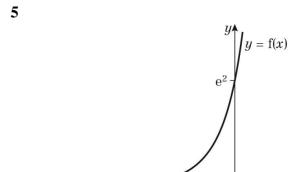
- 3 e $x=0 \Rightarrow y=6+10\times1=16$ As $x \to \infty$, $y \to \infty$ As $x \to -\infty$, $y \to 6+10\times0=6$
 - $\mathbf{f} \quad y = 100e^{-x} + 10$



$$x = 0 \Rightarrow y = 100 \times 1 + 10 = 110$$

As $x \to \infty$, $y \to 100 \times 0 + 10 = 10$
As $x \to -\infty$, $y \to \infty$

- **4 a** The graph is increasing so *b* is positive. The line y = 5 is an asymptote, so C = 5. When x = 0, $6 = Ae^{b \times 0} + C = A + 5$, so A = 1.
 - **b** The graph is decreasing so b is negative. The line y = 0 is an asymptote, so C = 0. When x = 0, $4 = Ae^{b \times 0} + C = A + 0$, so A = 4.
 - **c** The graph is increasing so *b* is positive. The line y = 2 is an asymptote, so C = 2. When x = 0, $8 = Ae^{b \times 0} + C = A + 2$, so A = 6.
- 5 $f(x) = e^{3x+2}$ = $e^{3x} \times e^2$ = $e^2 e^{3x}$ $A = e^2$ and b = 3



- $\mathbf{6} \quad \mathbf{a} \quad y = e^{6x}$ $\frac{dy}{dx} = 6e^{6x}$
 - **b** $y = e^{-\frac{1}{3}x}$ $\frac{dy}{dx} = -\frac{1}{3}e^{-\frac{1}{3}}$
 - $\mathbf{c} \quad y = 7e^{2x}$ $\frac{dy}{dx} = 2 \times 7e^{2x} = 14e^{2x}$
 - **d** $y = 5e^{0.4x}$ $\frac{dy}{dx} = 0.4 \times 5e^{0.4x} = 2e^{0.4x}$
 - $\mathbf{e} \quad y = e^{3x} + 2e^x$ $\frac{dy}{dx} = 3e^{3x} + 2e^x$
 - $f y = e^{x}(e^{x} + 1) = e^{2x} + e^{x}$ $\frac{dy}{dx} = 2e^{2x} + e^{x}$
- 7 **a** $y = e^{3x}$ $\frac{dy}{dx} = 3e^{3x}$ When x = 2, $\frac{dy}{dx} = 3e^{3 \times 2} = 3e^{6}$

7 **b** When
$$x = 0$$
, $dy = 3 \times 0$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\mathrm{e}^{3\times0} = 3$$

c When
$$x = -0.5$$
,

$$\frac{dy}{dx} = 3e^{3 \times -0.5} = 3e^{-1.5}$$

8
$$f(x) = e^{0.2x}$$

 $f'(x) = 0.2e^{0.2x}$

The gradient of the tangent when x = 5 is $f'(5) = 0.2e^{0.2 \times 5} = 0.2e$ $f(5) = e^{0.2 \times 5} = e$

$$f(5) = e^{0.2 \times 5} = e^{0.2 \times 5}$$

The equation of the tangent in the form

$$y = mx + c$$

is
$$e = 0.2e \times 5 + c$$

$$e = e + c$$

so
$$c = 0$$

Therefore the tangent to the curve at the point (5, c) is in the form y = mx. Thus it so goes through the origin.