Equations and inequalities 3F

1 a
$$3x + 2y = 6$$
 (1)

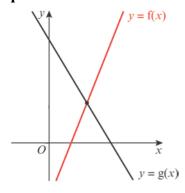
$$x - y = 5 \tag{2}$$

Multiply equation (2) by 2:

$$2x - 2y = 10$$
 (3)

Add equations (1) and (3):

$$5x = 16$$


$$x = \frac{16}{5}, y = -\frac{9}{5}$$

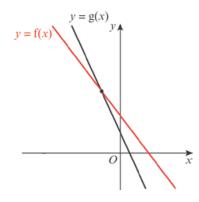
The solution is $P(\frac{16}{5}, -\frac{9}{5})$.

b
$$2y + 3x > x - y$$
 when the line L_1 is above the line L_2 :

$$x < \frac{16}{5}$$

2 a i

ii
$$3x - 7 = 13 - 2x$$

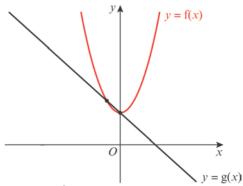

$$5x = 20$$

$$x = 4, y = 5$$

The lines intersect at (4, 5).

iii
$$f(x) \le g(x)$$
 when the $f(x)$ is below $g(x)$, so $x \le 4$

b i


2 b ii
$$8-5x = 14-3x$$
 $-2x = 6$

$$x = -3$$
, $y = 23$

The lines intersect at (-3, 23).

iii
$$f(x) \le g(x)$$
 when $f(x)$ is below $g(x)$, so $x \ge -3$

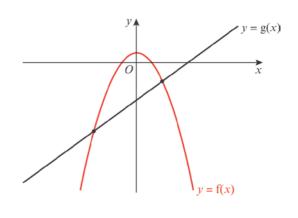
c i

ii
$$x^2 + 5 = 5 - 2x$$

$$x^2 + 2x = 0$$

$$x(x+2)=0$$

$$x = 0 \text{ or } x = -2$$


When
$$x = 0$$
, $y = 5$

When
$$x = -2$$
, $y = 9$

The lines intersect at (0, 5) and (-2, 9).

iii
$$f(x) \le g(x)$$
 when $f(x)$ is below $g(x)$, so $-2 \le x \le 0$

d i

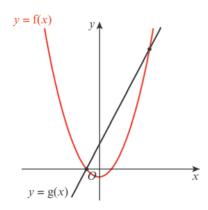
$$3 - x^2 = 2x - 12$$
$$x^2 + 2x - 15 = 0$$

$$x^2 + 2x - 15 = 0$$

 $(x + 5)(x - 3) = 0$

$$x = -5 \text{ or } x = 3$$

When
$$x = -5$$
, $y = -22$


When
$$x = 3$$
, $y = -6$

The lines intersect at (-5, -22)

and (3, -6).

iii
$$f(x) \le g(x)$$
 when $f(x)$ is below $g(x)$, so $x \le -5$ or $x \ge 3$

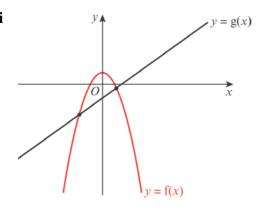
e i

ii
$$x^2 - 5 = 7x + 13$$

$$x^2 - 7x - 18 = 0$$

$$(x-9)(x+2)=0$$

$$x = 9 \text{ or } x = -2$$


When
$$x = 9$$
, $y = 76$

When
$$x = -2$$
, $y = -1$

The lines intersect at (-2, -1)and (9, 76).

iii $f(x) \le g(x)$ when f(x) is below g(x), so $-2 \le x \le 9$

fi

f ii
$$7 - x^2 = 2x - 8$$

$$x^2 + 2x - 15 = 0$$

$$(x+5)(x-3)=0$$

$$x = -5 \text{ or } x = 3$$

When
$$x = -5$$
, $y = -18$

When
$$x = 3$$
, $y = -2$

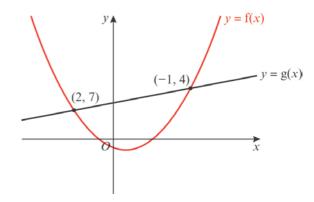
The lines intersect at (-5, -18)

and (3, -2)

iii
$$f(x) \le g(x)$$
 when $f(x)$ is below $g(x)$, so $x \le -5$ or $x \ge 3$

3 a
$$3x^2 - 2x - 1 = x + 5$$

$$3x^2 - 3x - 6 = 0$$


$$x^2 - x - 2 = 0$$

$$(x-2)(x+1)=0$$

$$x = 2, x = -1$$

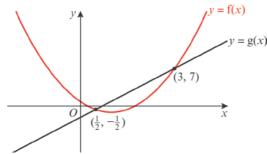
The points of intersection are

(2, 7) and (-1, 4).

So the required values are -1 < x < 2

b
$$2x^2 - 4x + 1 = 3x - 2$$

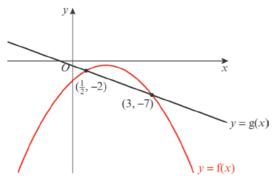
 $2x^2 - 7x + 3 = 0$


$$(2x-1)(x-3)=0$$

$$x = \frac{1}{2} \text{ or } x = 3$$

The points of intersection are

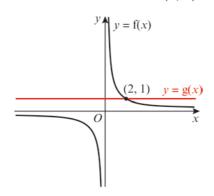
$$(\frac{1}{2}, -\frac{1}{2})$$
 and $(3, 7)$.


3 b

So the required values are $\frac{1}{2} < x < 3$

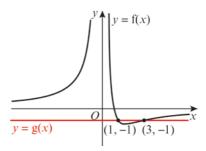
c
$$5x - 2x^2 - 4 = -2x - 1$$

 $2x^2 - 7x + 3 = 0$
 $(2x - 1)(x - 3) = 0$
 $x = \frac{1}{2}$ or $x = 3$

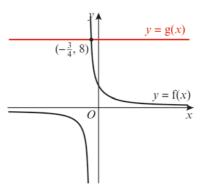

The points of intersection are $(\frac{1}{2}, -2)$ and (3, -7).

So the required values are $x < \frac{1}{2}$ or x > 3

$$\mathbf{d} \quad \frac{2}{x} = 1$$
$$x = 2$$


Point of intersection is (2, 1)

d So the required values are x < 0 or x > 2


e
$$\frac{3}{x^2} - \frac{4}{x} = -1$$

Multiply both sides by x^2
 $3 - 4x = -x^2$
 $x^2 - 4x + 3 = 0$
 $(x - 1)(x - 3) = 0$
 $x = 1$ or $x = 3$

Points of intersection are (1, -1) and (3, -1)

So the required values are 1 < x < 3

Point of intersection is $(-\frac{3}{4}, 8)$

So the required values are x < -1 or $x > -\frac{3}{4}$

Challenge

a
$$x^2 - 4x - 12 = 6 + 5x - x^2$$

 $2x^2 - 9x - 18 = 0$
 $(2x + 3)(x - 6) = 0$
 $x = -\frac{3}{2}$ or $x = 6$

The points of intersection are $\left(-\frac{3}{2}, -\frac{15}{4}\right)$ and (6, 0).

b So the required values are
$$-\frac{3}{2} < x < 6$$

 $\{x: -\frac{3}{2} < x < 6\}$