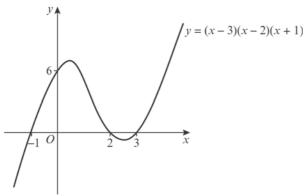
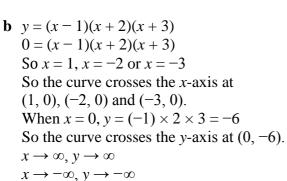
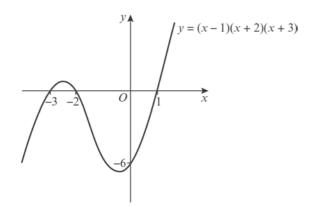
Graphs and transformations 4A

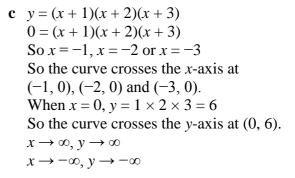
1 **a**
$$y = (x-3)(x-2)(x+1)$$

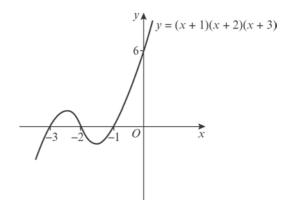
 $0 = (x-3)(x-2)(x+1)$
So $x = 3$, $x = 2$ or $x = -1$
So the curve crosses the x-axis at (3, 0), (2, 0) and (-1, 0).
When $x = 0$, $y = (-3) \times (-2) \times 1 = 6$
So the curve crosses the y-axis at (0, 6).
 $x \to \infty$, $y \to \infty$
 $x \to -\infty$, $y \to -\infty$

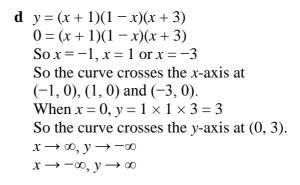


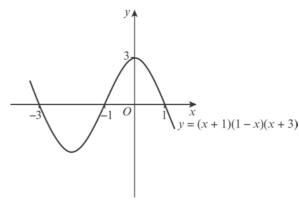












1 e y = (x-2)(x-3)(4-x)

$$0 = (x-2)(x-3)(4-x)$$

So
$$x = 2$$
, $x = 3$ or $x = 4$

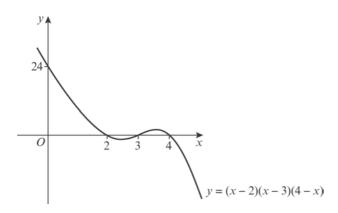
So the curve crosses the x-axis at (2, 0), (4, 0) and (4, 0).

When
$$x = 0$$
, $y = (-2) \times (-3) \times 4 = 24$

So the curve crosses the y-axis at (0, 24).

$$x \to \infty, y \to -\infty$$

$$x \to -\infty, y \to \infty$$



f y = x(x-2)(x+1)

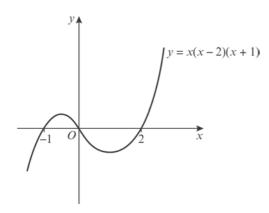
$$0 = x(x-2)(x+1)$$

So
$$x = 0$$
, $x = 2$ or $x = -1$

So the curve crosses the *x*-axis at (0, 0), (2, 0) and (-1, 0).

$$x \to \infty, y \to \infty$$

$$x \to -\infty, y \to -\infty$$



y = x(x+1)(x-1)

$$0 = x(x+1)(x-1)$$

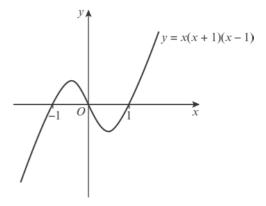
So
$$x = 0$$
, $x = -1$ or $x = 1$

So the curve crosses the x-axis at (0, 0) (-1, 0) and (1, 0)

$$(0, 0), (-1, 0)$$
 and $(1, 0)$.

$$x \to \infty, y \to \infty$$

$$x \to -\infty, y \to -\infty$$



h y = x(x+1)(1-x)

$$0 = x(x+1)(1-x)$$

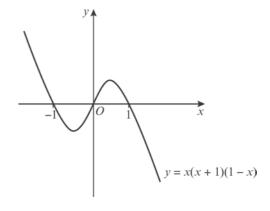
So
$$x = 0$$
, $x = -1$ or $x = 1$

So the curve crosses the *x*-axis at

$$(0, 0), (-1, 0)$$
 and $(1, 0)$.

$$x \to \infty, y \to -\infty$$

$$x \to -\infty, y \to \infty$$



1 i
$$y = (x-2)(2x-1)(2x+1)$$

$$0 = (x-2)(2x-1)(2x+1)$$

So
$$x = 2$$
, $x = \frac{1}{2}$ or $x = -\frac{1}{2}$

So the curve crosses the *x*-axis at

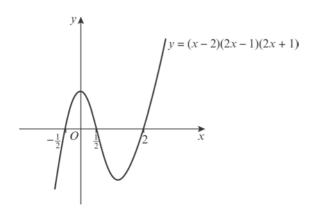
$$(2,0), (\frac{1}{2},0)$$
 and $(-\frac{1}{2},0)$.

When
$$x = 0$$
, $y = (-2) \times (-1) \times 1 = 2$

So the curve crosses the y-axis at (0, 2).

$$x \to \infty, y \to \infty$$

$$x \to -\infty, y \to -\infty$$



j
$$y = x(2x-1)(x+3)$$

$$0 = x(2x - 1)(x + 3)$$

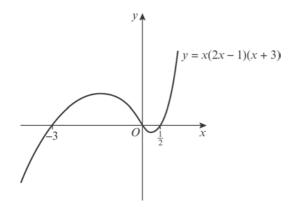
So
$$x = 0$$
, $x = \frac{1}{2}$ or $x = -3$

So the curve crosses the *x*-axis at

$$(0,0), (\frac{1}{2},0)$$
 and $(-3,0)$.

$$x \to \infty, y \to \infty$$

$$x \to -\infty, y \to -\infty$$



2 a
$$y = (x+1)^2(x-1)$$

$$0 = (x+1)^2(x-1)$$

So
$$x = -1$$
 or $x = 1$

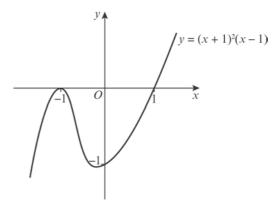
So the curve crosses the *x*-axis at (1, 0) and touches the *x*-axis at (-1, 0).

When
$$x = 0$$
, $y = 1^2 \times (-1) = -1$

So the curve crosses the y-axis at (0, -1).

$$x \to \infty, y \to \infty$$

$$x \to -\infty, y \to -\infty$$



b
$$y = (x+2)(x-1)^2$$

$$0 = (x+2)(x-1)^2$$

So
$$x = -2$$
 or $x = 1$

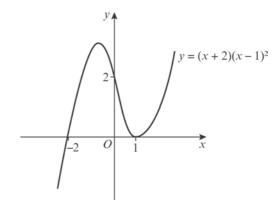
So the curve crosses the *x*-axis at (-2, 0) and touches the *x*-axis at (1, 0).

When
$$x = 0$$
, $y = 2 \times (-1)^2 = 2$

So the curve crosses the y-axis at (0, 2).

$$x \to \infty, y \to \infty$$

$$x \to -\infty, y \to -\infty$$



2 **c**
$$y = (2 - x)(x + 1)^2$$

 $0 = (2 - x)(x + 1)^2$

So
$$x = 2$$
 or $x = -1$

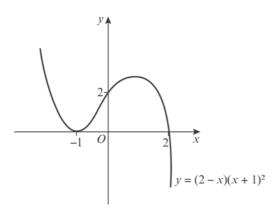
So the curve crosses the *x*-axis at (2, 0) and touches the *x*-axis at (-1, 0).

When
$$x = 0$$
, $y = 2 \times 1^2 = 2$

So the curve crosses the y-axis at (0, 2).

$$x \to \infty, y \to -\infty$$

 $x \to -\infty, y \to \infty$



d
$$y = (x-2)(x+1)^2$$

 $0 = (x-2)(x+1)^2$

So
$$x = 2$$
 or $x = -1$

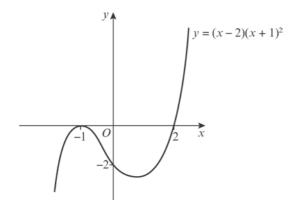
So the curve crosses the x-axis at (2, 0) and touches the x-axis at (-1, 0).

When
$$x = 0$$
, $y = (-2) \times 1^2 = -2$

So the curve crosses the y-axis at (0, -2).

$$x \to \infty, y \to \infty$$

$$x \to -\infty, y \to -\infty$$



e
$$y = x^2(x+2)$$

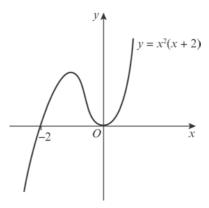
 $0 = x^2(x+2)$

So
$$x = 0$$
 or $x = -2$

So the curve crosses the x-axis at (-2, 0) and touches the x-axis at (0, 0).

$$x \to \infty, y \to \infty$$

$$x \to -\infty, y \to -\infty$$



f
$$y = (x - 1)^2 x$$

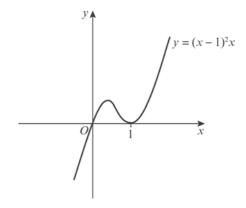
$$0 = (x - 1)^2 x$$

So
$$x = 1$$
 or $x = 0$

So the curve crosses the x-axis at (0, 0) and touches the x-axis at (1, 0).

$$x \to \infty, y \to \infty$$

$$x \to -\infty, y \to -\infty$$



2 g
$$y = (1-x)^2(3+x)$$

$$0 = (1 - x)^2(3 + x)$$

So
$$x = 1$$
 or $x = -3$

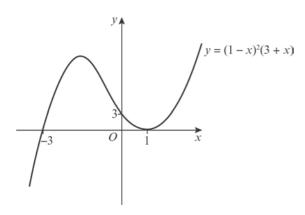
So the curve crosses the *x*-axis at (-3, 0) and touches the *x*-axis at (1, 0).

When
$$x = 0$$
, $y = 1^2 \times 3 = 3$

So the curve crosses the y-axis at (0, 3).

$$x \to \infty, y \to \infty$$

$$x \to -\infty, y \to -\infty$$



h
$$y = (x - 1)^2(3 - x)$$

$$0 = (x-1)^2(3-x)$$

So
$$x = 1$$
 or $x = 3$

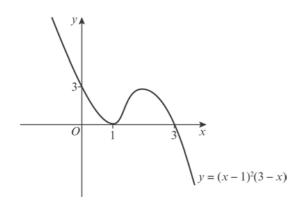
So the curve crosses the x-axis at (3, 0) and touches the x-axis at (1, 0).

When
$$x = 0$$
, $y = (-1)^2 \times 3 = 3$

So the curve crosses the y-axis at (0, 3).

$$x \to \infty, y \to -\infty$$

$$x \to -\infty, y \to \infty$$



i
$$y = x^2(2 - x)$$

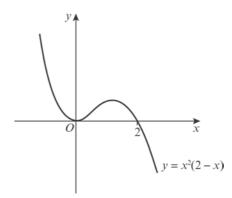
$$0 = x^2(2 - x)$$

So
$$x = 0$$
 or $x = 2$

So the curve crosses the x-axis at (2, 0) and touches the x-axis at (0, 0).

$$x \to \infty, y \to -\infty$$

$$x \to -\infty, y \to \infty$$



j
$$y = x^2(x-2)$$

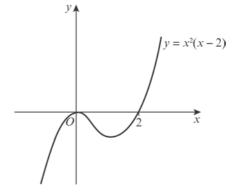
$$0 = x^2(x-2)$$

So
$$x = 0$$
 or $x = 2$

So the curve crosses the x-axis at (2, 0) and touches the x-axis at (0, 0).

$$x \to \infty, y \to \infty$$

$$x \to -\infty, y \to -\infty$$



3 **a**
$$y = x^3 + x^2 - 2x$$

= $x(x^2 + x - 2)$

$$= x(x + x + 2)$$

= $x(x + 2)(x - 1)$

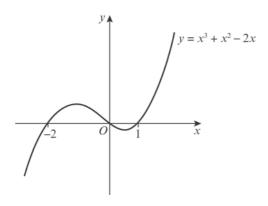
$$0 = x(x+2)(x-1)$$

So
$$x = 0$$
, $x = -2$ or $x = 1$

So the curve crosses the *x*-axis at (0, 0), (-2, 0) and (1, 0).

$$x \to \infty, y \to \infty$$

$$x \to -\infty, y \to -\infty$$



b
$$y = x^3 + 5x^2 + 4x$$

$$=x(x^2+5x+4)$$

$$= x(x+4)(x+1)$$

$$0 = x(x+4)(x+1)$$

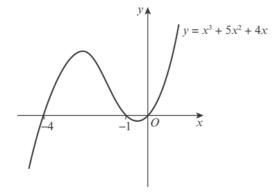
So
$$x = 0$$
, $x = -4$ or $x = -1$

So the curve crosses the x-axis at

(0, 0), (-4, 0) and (-1, 0).

$$x \to \infty, y \to \infty$$

$$x \to -\infty, y \to -\infty$$



$$y = x^3 + 2x^2 + x$$

= $x(x^2 + 2x + 1)$

$$= x(x + 2x + 1)^2$$
$$= x(x + 1)^2$$

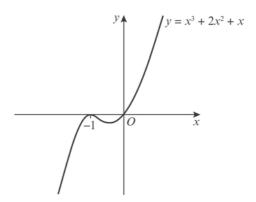
$$0 = x(x+1)^2$$

So
$$x = 0$$
 or $x = -1$

So the curve crosses the x-axis at (0, 0) and touches the x-axis at (-1, 0).

$$x \to \infty, y \to \infty$$

$$x \to -\infty, y \to -\infty$$



d
$$y = 3x + 2x^2 - x^3$$

$$=x(3+2x-x^2)$$

$$= x(3-x)(1+x)$$
$$0 = x(3-x)(1+x)$$

$$0 = x(3-x)(1+x)$$

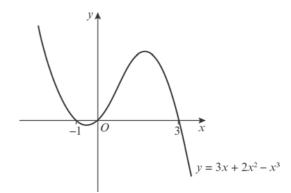
So
$$x = 0$$
, $x = 3$ or $x = -1$

So the curve crosses the *x*-axis at

(0, 0), (3, 0) and (-1, 0).

$$x \to \infty, y \to -\infty$$

$$x \to -\infty, y \to \infty$$



3 e
$$y = x^3 - x^2$$

$$=x^2(x-1)$$

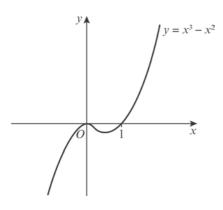
$$0 = x^2(x-1)$$

So
$$x = 0$$
 or $x = 1$

So the curve crosses the *x*-axis at (1, 0) and touches the *x*-axis at (0, 0).

$$x \to \infty, y \to \infty$$

$$x \to -\infty, y \to -\infty$$



f
$$y = x - x^3$$

$$=x(1-x^2)$$

$$=x(1-x)(1+x)$$

$$0 = x(1-x)(1+x)$$

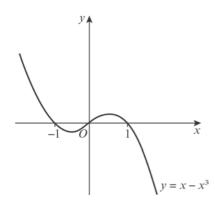
So
$$x = 0$$
, $x = 1$ or $x = -1$

So the curve crosses the *x*-axis at

(0, 0), (1, 0) and (-1, 0).

$$x \to \infty, y \to -\infty$$

$$x \to -\infty, y \to \infty$$



g
$$y = 12x^3 - 3x$$

$$=3x(4x^2-1)$$

$$=3x(2x-1)(2x+1)$$

$$0 = 3x(2x - 1)(2x + 1)$$

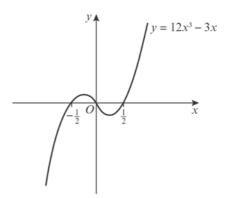
So
$$x = 0$$
, $x = \frac{1}{2}$ or $x = -\frac{1}{2}$

So the curve crosses the *x*-axis at

$$(0, 0), (\frac{1}{2}, 0)$$
 and $(-\frac{1}{2}, 0)$.

$$x \to \infty, y \to \infty$$

$$x \to -\infty, y \to -\infty$$



h
$$y = x^3 - x^2 - 2x$$

$$=x(x^2-x-2)$$

$$=x(x+1)(x-2)$$

$$0 = x(x+1)(x-2)$$

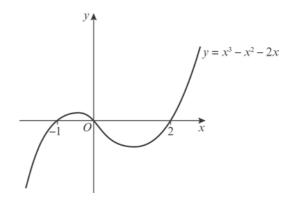
So
$$x = 0$$
, $x = -1$ or $x = 2$

So the curve crosses the x-axis at

$$(0, 0), (-1, 0)$$
 and $(2, 0)$.

$$x \to \infty, y \to \infty$$

$$x \to -\infty, y \to -\infty$$



3 i
$$y = x^3 - 9x$$

$$=x(x^2-9)$$

$$=x(x-3)(x+3)$$

$$0 = x(x-3)(x+3)$$

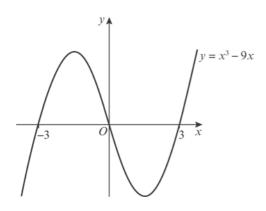
So $x = 0$, $x = 3$ or $x = -3$

So the curve crosses the x-axis at

$$(0, 0), (3, 0)$$
 and $(-3, 0)$.

$$x \to \infty, y \to \infty$$

 $x \to -\infty, y \to -\infty$



$$y = x^3 - 9x^2$$

$$= x^{2}(x-9)$$

$$= x^{2}(x-9)$$
$$0 = x^{2}(x-9)$$

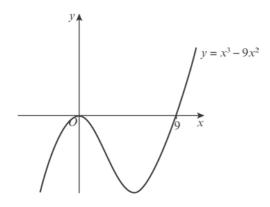
So
$$x = 0$$
 or $x = 9$

So the curve crosses the x-axis at

(0, 0) and touches the x-axis at (0, 0).

$$x \to \infty, y \to \infty$$

$$x \to -\infty, y \to -\infty$$



4 a
$$y = (x-2)^3$$

$$0 = (x-2)^3$$

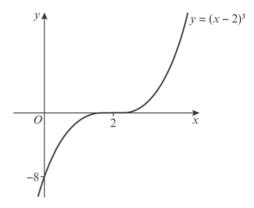
So x = 2 and the curve crosses the x-axis at (2, 0) only.

When
$$x = 0$$
, $y = (-2)^3 = -8$

So the curve crosses the y-axis at (0, -8).

$$x \to \infty, y \to \infty$$

$$x \to -\infty, y \to -\infty$$



b
$$y = (2 - x)^3$$

$$0 = (2 - x)^3$$

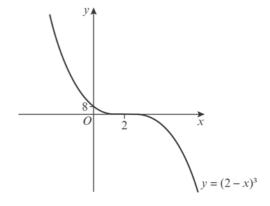
So x = 2 and the curve crosses the x-axis at (2, 0) only.

When
$$x = 0$$
, $y = 2^3 = 8$

So the curve crosses y-axis at (0, 8).

$$x \to \infty, y \to -\infty$$

$$x \to -\infty, y \to \infty$$



4 c $y = (x-1)^3$ $0 = (x-1)^3$

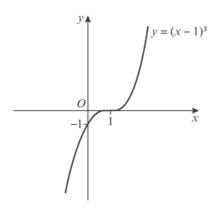
So x = 1 and the curve crosses the *x*-axis at (1, 0) only.

When x = 0, $y = (-1)^3 = -1$

So the curve crosses y-axis at (0, -1).

$$x \to \infty, y \to \infty$$

$$x \to -\infty, y \to -\infty$$



d $y = (x+2)^3$ $0 = (x+2)^3$

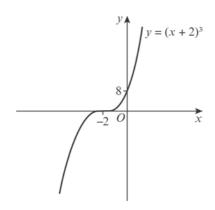
So x = -2 and the curve crosses the *x*-axis at (-2, 0) only.

When x = 0, $y = 2^3 = 8$

So the curve crosses y-axis at (0, 8).

$$x \to \infty, y \to \infty$$

$$x \to -\infty, y \to -\infty$$



e
$$y = -(x+2)^3$$

 $0 = -(x+2)^3$

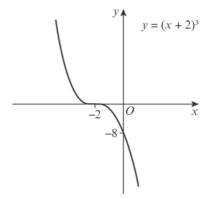
So x = -2 and the curve crosses the *x*-axis at (-2, 0) only.

When
$$x = 0$$
, $y = -2^3 = 8$

So the curve crosses the y-axis at (0, -8).

$$x \to \infty, y \to -\infty$$

$$x \to -\infty, y \to \infty$$



 $\mathbf{f} \quad y = (x+3)^3 \\
0 = (x+3)^3$

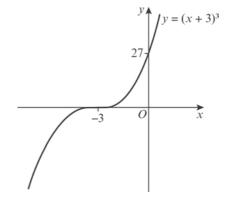
So x = -3 and the curve crosses the *x*-axis at (-3, 0) only.

When x = 0, $y = 3^3 = 27$

So the curve crosses the y-axis at (0, 27).

$$x \to \infty, y \to \infty$$

$$x \to -\infty, y \to -\infty$$



4 g $y = (x-3)^3$ $0 = (x-3)^3$

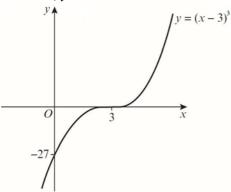
So x = 3 and the curve crosses the *x*-axis at (3, 0) only.

When x = 0, $y = (-3)^3 = -27$

So the curve crosses the y-axis at (0, -27).

$$x \to \infty, y \to -\infty$$

$$x \to -\infty, y \to \infty$$



h $y = (1 - x)^3$ $0 = (1 - x)^3$

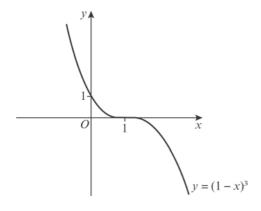
So x = 1 and the curve crosses the x-axis at (1, 0) only.

When x = 0, $y = 1^3 = 1$

So the curve crosses the y-axis at (0, 1).

$$x \to \infty, y \to -\infty$$

$$x \to -\infty, y \to \infty$$



i
$$y = -(x-2)^3$$

 $0 = -(x-2)^3$

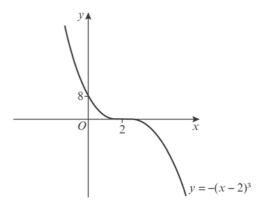
So x = 2 and the curve crosses the *x*-axis at (2, 0) only.

When
$$x = 0$$
, $y = -(-2)^3 = 8$

So the curve crosses the y-axis at (0, 8).

$$x \to \infty, y \to -\infty$$

$$x \to -\infty, y \to \infty$$



$$\mathbf{j} \quad y = -\left(x - \frac{1}{2}\right)^3$$

$$0 = -\left(x - \frac{1}{2}\right)^3$$

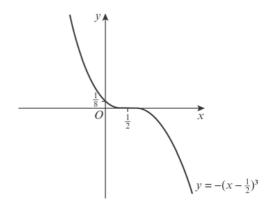
So $x = \frac{1}{2}$ and the curve crosses the *x*-axis at $(\frac{1}{2}, 0)$ only.

When
$$x = 0$$
, $y = -\left(-\frac{1}{2}\right)^3 = \frac{1}{8}$

So the curve crosses the y-axis at $(0, \frac{1}{8})$.

$$x \to \infty, y \to -\infty$$

$$x \to -\infty, y \to \infty$$



5 **a**
$$y = x^3 + bx^2 + cx + d$$

 $y = (x+3)(x+2)(x-1)$
 $= (x+3)(x^2+x-2)$
 $= x^3 + 4x^2 + x - 6$
 $b = 4, c = 1, d = -6$

b When
$$x = 0$$
, $y = -6$
So the curve crosses the y-axis at $(0, -6)$.

6
$$y = ax^3 + bx^2 + cx + d$$

 $y = a(x+1)(x-2)(x-3)$
 $= a(x+1)(x^2 - 5x + 6)$
 $= a(x^3 - 4x^2 + x + 6)$
The curve crosses the y-axis at $(0, 2)$, so when $x = 0$, $y = 2$.
 $2 = a(0 - 0 + 0 + 6)$
 $a = \frac{1}{3}$
 $y = \frac{1}{3}(x^3 - 4x^2 + x + 6)$
 $= \frac{1}{3}x^3 - \frac{4}{3}x^2 + \frac{1}{3}x + 2$
 $a = \frac{1}{3}$, $b = -\frac{4}{3}$, $c = \frac{1}{3}$, $d = 2$

7 **a**
$$f(x) = (x - 10)(x^2 - 2x) + 12x$$

= $x^3 - 12x^2 + 20x + 12x$
= $x^3 - 12x^2 + 32x$
= $x(x^2 - 12x + 32)$

b
$$f(x) = x(x^2 - 12x + 32)$$

= $x(x - 4)(x - 8)$

c
$$0 = x(x-4)(x-8)$$

So $x = 0$, $x = 4$ or $x = 8$
So the curve crosses the x-axis at $(0, 0)$, $(4, 0)$ and $(8, 0)$
 $x \to \infty$, $y \to \infty$
 $x \to -\infty$, $y \to -\infty$

