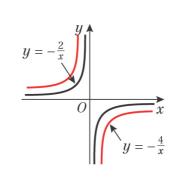
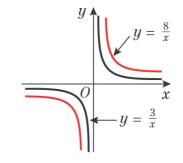

Graphs and transformations 4C

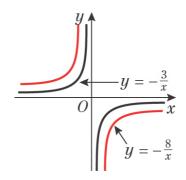
1 a For
$$x > 0$$
, $\frac{4}{x} > \frac{2}{x}$ (since $4 > 2$)
For $x < 0$, $\frac{4}{x} < \frac{2}{x}$
So $y = \frac{4}{x}$ is above $y = \frac{2}{x}$ in

first quadrant and below in third quadrant.




c Graphs are like $y = -\frac{1}{x}$ and so exist in second and fourth quadrants.

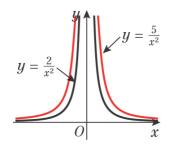
For x > 0, $-\frac{4}{x} < -\frac{2}{x}$ For x < 0, $-\frac{4}{x} > -\frac{2}{x}$ So $y = -\frac{4}{x}$ is above $y = -\frac{2}{x}$ in second quadrant and below in fourth quadrant.



С

d For x > 0, $\frac{8}{x} > \frac{3}{x}$ So $y = \frac{8}{x}$ is above $y = \frac{3}{x}$ in first quadrant and below in third quadrant.

e For x > 0, $-\frac{8}{x} < -\frac{3}{x}$ For x < 0, $-\frac{8}{x} > -\frac{3}{x}$ So $y = -\frac{8}{x}$ is above $y = -\frac{3}{x}$ in second quadrant and below in fourth quadrant.

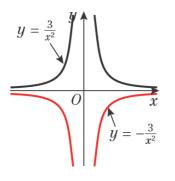


Pure Mathematics Year 1/AS

SolutionBank

2 **a** $y = \frac{2}{x^2}$ and $y = \frac{5}{x^2}$ These are $y = \frac{k}{x^2}$ graphs, with k > 0. x^2 is always positive and k > 0 so the y-values are all positive.

y-values are an positive. $\frac{5}{x^2} > \frac{2}{x^2} \text{ (since } 5 > 2\text{)}$ So $y = \frac{5}{x^2}$ is above $y = \frac{2}{x^2}$.



b $y = \frac{3}{x^2}$ and $y = -\frac{3}{x^2}$ $y = \frac{3}{x^2}$ is a $y = \frac{k}{x^2}$ graph, with k > 0.

 x^2 is always positive and k > 0 so the *y*-values are all positive.

$$y = -\frac{3}{x^2}$$
 is a $y = \frac{k}{x^2}$ graph, with $k < 0$.

 x^2 is always positive and k < 0 so the *y*-values are all negative.

c
$$y = -\frac{2}{x^2}$$
 and $y = -\frac{6}{x^2}$
These are $y = \frac{k}{x^2}$ graphs, with $k < 0$.
 x^2 is always positive and $k < 0$ so the
y-values are all negative.
 $-\frac{6}{x^2} < -\frac{2}{x^2}$ (since $-6 > -2$)

$$x^{2}$$
 x^{2} (charge $x = -\frac{2}{x^{2}}$)
So $y = -\frac{6}{x^{2}}$ is below $y = -\frac{2}{x^{2}}$.

$$y = -\frac{2}{x^2}$$