#### Graphs and transformations 4F

- **1 a** f(2x) is a stretch with scale factor  $\frac{1}{2}$  in the *x*-direction.
  - i  $f(x) = x^2$ ,  $f(2x) = (2x)^2 = 4x^2$



ii 
$$f(x) = x^3$$
,  $f(2x) = (2x)^3 = 8x^3$ 



**iii** 
$$f(x) = \frac{1}{x}, f(2x) = \frac{1}{2x} = \frac{1}{2} \times \frac{1}{x}$$



- **b** f(-x) is a reflection in the *y*-axis (or stretch with scale factor -1 in the *x*-direction).
  - **i**  $f(x) = x^2$ ,  $f(-x) = (-x)^2 = x^2$

ii 
$$f(x) = x^3$$
,  $f(-x) = (-x)^3 = -x^3$ 



**b iii**  $f(x) = \frac{1}{x}, f(-x) = \frac{1}{-x} = -\frac{1}{x}$ 

c  $f(\frac{1}{2}x)$  is a stretch with scale factor 2 in the *x*-direction.

~

i 
$$f(x) = x^2$$
,  $f\left(\frac{1}{2}x\right) = \left(\frac{1}{2}x\right)^2 = \frac{x^2}{4}$ 

**ii** 
$$f(x) = x^3$$
,  $f(\frac{1}{2}x) = (\frac{1}{2}x)^3 = \frac{x^3}{8}$ 

**c iii** 
$$f(x) = \frac{1}{x}, f(\frac{1}{2}x) = \frac{1}{\frac{1}{2}x} = \frac{2}{x}$$

**d** f(4x) is a stretch with scale factor  $\frac{1}{4}$  in the *x*-direction.

i 
$$f(x) = x^2$$
,  $f(4x) = (4x)^2 = 16x^2$ 

**1 d** ii  $f(x) = x^3$ ,  $f(4x) = (4x)^3 = 64x^3$ 



**iii** 
$$f(x) = \frac{1}{x}, f(4x) = \frac{1}{4x} = \frac{1}{4} \times \frac{1}{x}$$



- e  $f(\frac{1}{4}x)$  is a stretch with scale factor 4 in the *x*-direction.
  - **i**  $f(x) = x^2$ ,  $f(\frac{1}{4}x) = (\frac{1}{4}x)^2 = \frac{x^2}{16}$

**ii** 
$$f(x) = x^3$$
,  $f(\frac{1}{4}x) = (\frac{1}{4}x)^3 = \frac{x^3}{64}$ 



e iii  $f(x) = \frac{1}{4}, f(\frac{1}{4}x) = \frac{1}{\frac{1}{4}x} = \frac{4}{x}$ 

**f** 2f(x) is a stretch with scale factor 2 in the *y*-direction.

$$f(x) = x^2, 2f(x) = 2x^2$$

i

**ii** 
$$f(x) = x^3$$
,  $2f(x) = 2x^3$ 

 $O^{\top}$   $\tilde{x}$ 



**iii** 
$$f(x) = \frac{1}{x}$$
,  $2f(x) = 2 \times \frac{1}{x} = \frac{2}{x}$ 



**g**  $-\mathbf{f}(x)$  is a reflection in the *x*-axis (or stretch with scale factor -1 in the *y*-direction).

**i** 
$$f(x) = x^2, -f(x) = -x^2$$





- 1 g iii  $f(x) = \frac{1}{x}, -f(x) = -\frac{1}{x}$ 
  - **h** 4f(x) is a stretch with scale factor 4 in the *y*-direction.
    - **i**  $f(x) = x^2, 4f(x) \to y = 4x^2$



**ii** 
$$f(x) = x^3$$
,  $4f(x) = 4x^3$ 



**iii** 
$$f(x) = \frac{1}{x}, 4f(x) = 4 \times \frac{1}{x} = \frac{4}{x}$$



**i i**  $\frac{1}{2}$  f(x) is a stretch with scale factor  $\frac{1}{2}$  in the y-direction.



**i ii** 
$$f(x) = x^3$$
,  $\frac{1}{2}f(x) = \frac{1}{2}x^3$ 

$$\begin{array}{c}
 y \\
 \overline{f(x)} \\
 \overline{$$

**j i**  $\frac{1}{4} f(x)$  is a stretch with scale factor  $\frac{1}{4}$  in the *y*-direction.  $f(x) = x^2, \frac{1}{4} f(x) = \frac{1}{4} x^2$ 



**ii** 
$$f(x) = x^3$$
,  $\frac{1}{4}f(x) = \frac{1}{4}x^3$ 



**iii** 
$$f(x) = \frac{1}{x}, \ \frac{1}{4}f(x) = \frac{1}{4} \times \frac{1}{x} = \frac{1}{4x}$$



2 a  $y = x^2 - 4$  = (x - 2)(x + 2)As a = 1 is positive, the graph has a  $\bigvee$ shape and a minimum point. 0 = (x - 2)(x + 2)So x = 2 or x = -2The curve crosses the x-axis at (2, 0) and (-2, 0). When x = 0,  $y = (-2) \times 2 = -4$ The curve crosses the y-axis at (0, -4).



**b** f(4x) is a stretch with scale factor  $\frac{1}{4}$  in the *x*-direction.



$$\frac{1}{3}y = f(x)$$
$$y = 3f(x)$$

3f(x) is a stretch with scale factor 3 in the y-direction.



f(-x) is a reflection in the *y*-axis.



**2 b** -f(x) is a reflection in the *x*-axis.



3 a y = (x-2)(x+2)x 0 = (x-2)(x+2)xSo x = 2, x = -2 or x = 0The curve crosses the x-axis at (2, 0), (-2, 0) and (0, 0).  $x \to \infty, y \to \infty$  $x \to -\infty, y \to -\infty$ 



**b**  $f(\frac{1}{2}x)$  is a stretch with scale factor 2 in the *x*-direction.



f(2x) is a stretch with scale factor  $\frac{1}{2}$  in the *x*-direction.



#### **SolutionBank**

**3** b -f(x) is a reflection in the *x*-axis.



4 a  $y = x^2(x-3)$   $0 = x^2(x-3)$ So x = 0 or x = 3The curve touches the x-axis at (0, 0) and crosses it at (3, 0).  $x \to \infty, y \to \infty$  $x \to -\infty, y \to -\infty$ 



- **b** i  $f(x) = x^2(x-3)$ , so  $y = (2x)^2(2x-3)$  is f(2x), which is a stretch with scale factor  $\frac{1}{2}$  in the *x*-direction.
  - ii  $y = -x^2(x 3)$  is -f(x), which is a reflection in the *x*-axis.



5 a  $y = x^2 + 3x - 4$  = (x + 4)(x - 1)As a = 1 is positive, the graph has a  $\bigvee$ shape and a minimum point. 0 = (x + 4)(x - 1)So x = -4 or x = 1The curve crosses the *x*-axis at (-4, 0) and (1, 0). When x = 0,  $y = 4 \times (-1) = -4$ The curve crosses the *y*-axis at (0, -4).

$$y = x^2 + 3x - 4$$

**b**  $5y = x^2 + 3x - 4$   $y = \frac{1}{5} (x^2 + 3x - 4)$   $f(x) = x^2 + 3x - 4$ , so  $y = \frac{1}{5}(x^2 + 3x - 4)$  is  $\frac{1}{5}f(x)$ , which is a stretch with scale factor  $\frac{1}{5}$ in the y-direction.



6 a  $y = x^2(x-2)^2$   $0 = x^2(x-2)^2$ So x = 0 or x = 2The curve touches the x-axis at (0, 0) and (2, 0).  $x \to \infty, y \to \infty$  $x \to -\infty, y \to \infty$ 



**b**  $3y = -x^2(x-2)^2$   $y = -\frac{1}{3}x^2(x-2)^2$   $f(x) = x^2(x-2)^2$ , so  $y = -\frac{1}{3}x^2(x-2)^2$  is  $(\frac{1}{2}x) - \frac{1}{3}f(x)$ , which is a stretch with scale factor  $\frac{1}{3}$  in the y-direction and a reflection in the x-axis.



- 7 a y = f(2x) is a stretch with scale factor <sup>1</sup>/<sub>2</sub> in the x-direction, so all x-coordinates are halved.
  P(2, -3) is transformed to the point (1, -3).
  - **b** y = 4f(x) is a stretch with scale factor 4 in the *y*-direction, so all *y*-coordinates are multiplied by four. P(2, -3) is transformed to the point (2, -12).
- 8  $f(\frac{1}{2}x)$  is a stretch with scale factor 2 in the *x*-direction, so all *x*-coordinates are doubled. Q(-2, 8) is transformed to the point (-4, 8).
- 9 **a**  $y = (x 2)(x 3)^2$   $0 = (x - 2)(x - 3)^2$ So x = 2 or x = 3The curve crosses the *x*-axis at (2, 0) and touches it at (3, 0). When  $x = 0, y = (-2) \times (-3)^2 = -18$

9

**b**  $f(x) = (x - 2)(x - 3)^2$   $y = (ax - 2)(ax - 3)^2$  is the graph of y = f(ax), which is a stretch with scale factor  $\frac{1}{a}$  in the *x*-direction, so all *x*-coordinates are multiplied by  $\frac{1}{a}$ .

For the coordinate (2, 0) to be transformed to (1, 0), multiply the *x*-coordinate by  $\frac{1}{2}$ , giving a = 2. For the coordinate (3, 0) to be transformed to (1, 0), multiply the *x*-coordinate by  $\frac{1}{3}$ ,

giving a = 3, a = 2 or a = 3

#### Challenge

- 1  $y = \frac{1}{3}f(2x)$  is a stretch with scale factor  $\frac{1}{3}$ in the *y*-direction, so multiply the *y*-coordinate by  $\frac{1}{3}$  and a stretch with scale factor  $\frac{1}{2}$  in the *x*-direction, so multiply the *x*-coordinate by  $\frac{1}{2}$ . R(4, -6) is transformed to (2, -2).
- 2 S(-4, 7) is transformed to S'(-8, 1.75). The *x*-coordinate has doubled, which is a stretch of scale factor 2 in the *x*-direction. The *y*-coordinate has been divided by 4, which is a stretch of scale factor  $\frac{1}{4}$  in the *y*-direction.

The transformation is  $y = \frac{1}{4}f(\frac{1}{2}x)$ .