Algebraic methods 7D

1 $n^2 - n = n(n - 1)$ If *n* is even, n - 1 is odd and even × odd = even If *n* is odd, n - 1 is even and odd × even = even So $n^2 - n$ is even for all values of *n*.

,

2 LHS =
$$\frac{x}{(1+\sqrt{2})} \times \frac{(1-\sqrt{2})}{(1-\sqrt{2})}$$

= $\frac{x(1-\sqrt{2})}{(1-2)}$
= $\frac{x-x\sqrt{2}}{-1}$
= $x\sqrt{2}-x$
= RHS
So $\frac{x}{(1+\sqrt{2})} \equiv x\sqrt{2}-x$

3 LHS =
$$(x + \sqrt{y})(x - \sqrt{y})$$

= $x^2 - x\sqrt{y} + x\sqrt{y} - y$
= $x^2 - y$
= RHS
So $(x + \sqrt{y})(x - \sqrt{y}) \equiv x^2 - y$

4 LHS =
$$(2x - 1)(x + 6)(x - 5)$$

= $(2x - 1)(x^2 + x - 30)$
= $2x^3 + x^2 - 61x + 30$
= RHS
So $(2x - 1)(x + 6)(x - 5) \equiv$
 $2x^3 + x^2 - 61x + 30$

- 5 Completing the square: $x^{2} + bx = \left(x + \frac{b}{2}\right)^{2} - \left(\frac{b}{2}\right)^{2}$ So $x^{2} + bx \equiv \left(x + \frac{b}{2}\right)^{2} - \left(\frac{b}{2}\right)^{2}$
- 6 $x^{2} + 2bx + c = 0$ Completing the square: $(x+b)^{2} - b^{2} + c = 0$ $(x+b)^{2} = b^{2} - c$ $x+b = \pm \sqrt{b^{2} - c}$

6 $x = -b \pm \sqrt{b^2 - c}$ So the solutions of $x^2 + 2bx + c = 0$ are $x = -b \pm \sqrt{b^2 - c}$.

7 LHS =
$$\left(x - \frac{2}{x}\right)^3$$

= $\left(x - \frac{2}{x}\right)\left(x^2 - 4 + \frac{4}{x^2}\right)$
= $x^3 - 6x + \frac{12}{x} - \frac{8}{x^3}$
= RHS
So $\left(x - \frac{2}{x}\right)^3 \equiv x^3 - 6x + \frac{12}{x} - \frac{8}{x^3}$
8 LHS = $\left(x^3 - \frac{1}{x}\right)\left(\frac{x^3}{x^2} + x^{-\frac{5}{2}}\right)$
= $\frac{9}{x^2} + x^{\frac{1}{2}} - x^{\frac{7}{2}}$
= $x^{\frac{9}{2}} - x^{-\frac{7}{2}}$
= $x^{\frac{9}{2}} - x^{-\frac{7}{2}}$
= $x^{\frac{1}{2}}\left(x^4 - \frac{1}{x^4}\right)$
= RHS
So $\left(x^3 - \frac{1}{x}\right)\left(x^{\frac{3}{2}} + x^{-\frac{5}{2}}\right) \equiv x^{\frac{1}{2}}\left(x^4 - \frac{1}{x^4}\right)$
9 $3n^2 - 4n + 10 = 3\left(n^2 - \frac{4}{3}n + \frac{10}{3}\right)$
= $3\left(\left(n - \frac{2}{3}\right)^2 - \frac{4}{9} + \frac{10}{3}\right)$
= $3\left(n - \frac{2}{3}\right)^2 + \frac{26}{3}$
The minimum value is $\frac{26}{3}$ so $3n^2 - 4n + 10$ is always positive.

10
$$-n^2 - 2n - 3 = -(n^2 + 2n + 3)$$

= $-((n + 1)^2 - 1 + 3)$
= $-(n + 1)^2 - 2$
The maximum value is -2 ,
so $-n^2 - 2n - 3$ is always negative.

11 $x^{2} + 8x + 20$ Complete the square $(x + 4)^{2} - 16 + 20 = (x + 4)^{2} + 4$

Pure Mathematics Year 1/AS

- 11 The minimum value of $(x + 4)^2 + 4$ is 4 So $(x + 4)^2 + 4 \ge 4$ Therefore, $x^2 + 8x + 20 \ge 4$
- 12 $kx^2 + 5kx + 3 = 0$ has no real roots, so $b^2 - 4ac < 0$ $(5k)^2 - 4k(3) < 0$ $25k^2 - 12k < 0$ k(25k - 12) < 0 $0 < k < \frac{12}{25}$ When k = 0: $(0)x^2 + 5(0)x + 3 = 0$ 3 = 0which is impossible, so no real roots. So combining these: $0 \le k < \frac{12}{25}$
- 13 $px^2 5x 6 = 0$ has two distinct real roots, so $b^2 - 4ac > 0$ 25 + 24p > 0 $p > -\frac{25}{24}$
- 14 A(1, 2), B(1, 2) and C(2, 4)The gradient of line $AB = \frac{2-1}{1-3} = -\frac{1}{2}$ The gradient of line $BC = \frac{4-2}{2-1} = 2$ The gradient of line $AC = \frac{4-1}{2-3} = -3$ The gradients are different so the three points are not collinear. Hence *ABC* is a triangle.

Gradient of $AB \times$ gradient of BC

 $= -\frac{1}{2} \times 2$ = -1

So *AB* is perpendicular to *BC*, and the triangle is a right-angled triangle.

15 A(1, 1), B(2, 4), C(6, 5) and D(5, 2) The gradient of line $AB = \frac{4-1}{2-1} = 3$ The gradient of line $BC = \frac{5-4}{6-2} = \frac{1}{4}$ The gradient of line $CD = \frac{2-5}{5-6} = 3$ The gradient of line $AD = \frac{2-1}{5-1} = \frac{1}{4}$ 15 Gradient of AB = gradient of CD, so ABand CD are parallel. Gradient of BC = gradient of AD, so BCand AD are parallel.

> So *ABCD* can be a parallelogram or a rectangle and we need to check further. Since there is not a pair of gradients which multiply to give -1 there is no right angle. Hence *ABCD* is a parallelogram.

16 *A*(2, 1), *B*(5, 2), *C*(4, -1) and *D* (1,-2)

The gradient of line $AB = \frac{2-1}{5-2} = \frac{1}{3}$ The gradient of line $BC = \frac{-1-2}{4-5} = 3$ The gradient of line $CD = \frac{-2+1}{1-4} = \frac{1}{3}$ The gradient of line $AD = \frac{-2-1}{1-2} = 3$

Gradient of AB = gradient of CD, so AB and CD are parallel. Gradient of BC = gradient of AD, so BC and AD are parallel.

Distance
$$AB = \sqrt{(5-2)^2 + (2-1)^2}$$

= $\sqrt{10}$

Distance $BC = \sqrt{(4-5)^2 + (-1-2)^2}$ = $\sqrt{10}$

Distance
$$CD = \sqrt{(1-4)^2 + (-2+1)^2}$$

= $\sqrt{10}$

Distance
$$AD = \sqrt{(1-2)^2 + (-2-1)^2}$$

= $\sqrt{10}$

All four sides are equal. Since no pairs of gradients multiply to give -1 there are no right angles at a vertex so this is not a square. Hence *ABCD* is a rhombus.

17 *A*(-5,2), *B*(-3,-4) and *C*(3,-2)

The gradient of line
$$AB = \frac{-4-2}{-3+5} = -3$$

Pure Mathematics Year 1/AS

SolutionBank

17 The gradient of line $BC = \frac{-2+4}{3+3} = \frac{1}{3}$ The gradient of line $AC = \frac{-2-2}{3+5} = -\frac{1}{2}$

The gradients are different so the three points are not collinear. Hence *ABC* is a triangle.

Gradient of $AB \times \text{gradient of } BC$ = $-3 \times \frac{1}{3}$ = -1So AB is perpendicular to BC.

Distance
$$AB = \sqrt{(-3+5)^2 + (-4-2)^2}$$

= $\sqrt{40}$

Distance
$$BC = \sqrt{(3+3)^2 + (-2+4)^2}$$

= $\sqrt{40}$
 $AB = BC$

As two sides are equal and an angle is right-angled, *ABC* is an isosceles right-angled triangle.

18 Substituting y = ax into $(x - 1)^2 + y^2 = k$: $(x - 1)^2 + a^2x^2 = k$ $x^2 - 2x + 1 + a^2x^2 - k = 0$ $x^2(1 + a^2) - 2x + 1 - k = 0$ The straight line cuts the circle at two distinct points, so this equation has two distinct real roots, so $b^2 - 4ac > 0$

$$(-2)^{2} - 4(1 + a^{2})(1 - k) > 0$$

$$4 - 4(1 - k + a^{2} - ka^{2}) > 0$$

$$4k - 4a^{2} + 4ka^{2} > 0$$

$$-a^{2} + k + ka^{2} > 0$$

$$-a^{2} + k(1 + a^{2}) > 0$$

$$k > \frac{a^{2}}{1 + a^{2}}$$

19
$$4y - 3x + 26 = 0$$

 $4y = 3x - 26$
 $y = \frac{3}{4}x - \frac{13}{2}$
Substituting $y = \frac{3}{4}x - \frac{13}{2}$ into
 $(x + 4)^2 + (y - 3)^2 = 100$:

19
$$(x+4)^2 + \left(\frac{3}{4}x - \frac{19}{2}\right)^2 = 100$$

 $x^2 + 8x + 16 + \frac{9}{16}x^2 - \frac{57}{4}x + \frac{361}{4} - 100$
 $= 0$
 $16x^2 + 128x + 256 + 9x^2 - 228x$
 $+ 1444 - 1600 = 0$
 $25x^2 - 100x + 100 = 0$
 $x^2 - 4x + 4 = 0$
 $(x-2)^2 = 0$
 $x = 2$
There is only one solution so the line

4y - 3x + 26 = 0 only touches the circle in one place, so it is a tangent to the circle.

20 Area of square = $(a + b)^2 = a^2 + 2ab + b^2$ Shaded area = $4\left(\frac{1}{2}ab\right) = 2ab$ Area of smaller square = $a^2 + 2ab + b^2 - 2ab$ = $a^2 + b^2$ = c^2

Challenge

1 Find the equations of the perpendicular bisectors to the chords *AB* and *BC*: A(7, 8) and B(-1, 8)

Midpoint =
$$\left(\frac{7-1}{2}, \frac{8+8}{2}\right) = (3, 8)$$

The gradient of the line segment *AB* = $\frac{8-8}{-1-7}$ = 0

So the line perpendicular to *AB* is a vertical line x = 3.

Midpoint =
$$\left(\frac{-1+6}{2}, \frac{8+1}{2}\right)$$

= $\left(\frac{5}{2}, \frac{9}{2}\right)$

The gradient of the line segment *BC* = $\frac{1-8}{6+1}$ = -1

Challenge

1 So the gradient of the line perpendicular to *BC* is 1.

The equation of the perpendicular line is $y - y_1 = m(x - x_1)$ m = 1 and $(x_1, y_1) = \left(\frac{5}{2}, \frac{9}{2}\right)$ So $y - \frac{9}{2} = x - \frac{5}{2}$ y = x + 2

AB and BC intersect at the centre of the circle, so solving x = 3 and y = x + 2 simultaneously: x = 3, y = 5Centre of the circle, X, is (3, 5).

Distance
$$AX = \sqrt{(7-3)^2 + (8-5)^2}$$

= $\sqrt{25}$
= 5

Distance
$$BX = \sqrt{(-1-3)^2 + (8-5)^2}$$

= $\sqrt{25}$
= 5

Distance
$$CX = \sqrt{(6-3)^2 + (1-5)^2}$$

= $\sqrt{25}$
= 5

Distance
$$DX = \sqrt{(0-3)^2 + (9-5)^2}$$

= $\sqrt{25}$
= 5

The distance from the centre of the circle to all four points is 5 units, so all four points lie on a circle with centre (3, 5).

 $\begin{array}{ll} \mathbf{2} & 3 = 2^2 - 1^2 \\ & 5 = 3^2 - 2^2 \\ & 7 = 4^2 - 3^2 \\ & 11 = 6^2 - 5^2 \end{array}$

Let *p* be a prime number greater than 2.

$$\left(\frac{1}{2}(p+1)\right)^2 - \left(\frac{1}{2}(p-1)\right)^2$$

= $\frac{1}{4}((p+1)^2 - (p-1)^2)$
= $\frac{1}{4}(4p)$
= p

So any odd prime number can be written as the difference of two squares.