Functions and graphs 2F

1 **a** y = 3f(x)

Vertical stretch, scale factor 3.

y = 3f(x) + 2. Vertical translation of +2.

b y = f(x-2). Horizontal translation of +2.

Vertical translation of -5.

1 c y = f(x+1)

Horizontal translation of -1.

Vertical stretch, scale factor $\frac{1}{2}$

$$\mathbf{d} \quad y = \mathbf{f}(2x)$$

Horizontal stretch, scale factor $\frac{1}{2}$

$$y = -f(2x)$$

Reflection in the *x*-axis.

(or Vertical stretch, scale factor -1).

e y = |f(x)|. Reflect, in the x-axis, the parts of the graph that lie below the x-axis.

1 **f**
$$y = f(-x)$$
.

Reflection in the *y*-axis.

$$y = |f(-x)|$$
.

Reflect, in the *x*-axis, the parts of the graph that lie below the *x*-axis.

2 a y = f(x-2)Horizontal translation of +2

$$y = 3f(x-2)$$

Vertical stretch, scale factor 3.

b
$$y = f\left(\frac{1}{2}x\right)$$

Horizontal stretch, scale factor 2.

2 b (continued)

$$y = \frac{1}{2} f\left(\frac{1}{2}x\right)$$

Vertical stretch, scale factor $\frac{1}{2}$

c
$$y = -f(x)$$

Reflection in the x-axis.
(Or vertical stretch, scale factor -1).

$$y = -f(x) + 4$$

Vertical translation of +4.

d
$$y = f(x+1)$$

Horizontal translation of -1 .

$$y = -2f(x+1)$$

Reflection in the *x*-axis, and vertical stretch, scale factor 2.

2 e y = f(|x|) can be written

$$y = \begin{cases} f(x), & x \ge 0 \\ f(-x), & x < 0 \end{cases}$$

y = f(-x) is a reflection of

y = f(x) in the y-axis.

Hence, y = f(|x|) is the following:

$$y = 2f(|x|)$$

Vertical stretch, scale factor 2.

2 **f** y = f(2x-6) can be written as

$$y = f(2(x-3))$$

y = f(2x): Horizontal stretch,

scale factor $\frac{1}{2}$

$$y = f(2(x-3))$$
: Horizontal

translation of +3

3 **a**
$$y = 3f(x)$$

Vertical stretch, scale factor 3.

$$y = 3f(x) - 1$$

Vertical translation of -1.

Asymptotes:
$$x = 2$$
, $y = -1$

A:(0,2)

3 b
$$y = f(x+2)$$

Horizontal translation of -2.

$$y = f(x+2) + 4$$

Vertical translation of +4.

Asymptotes:
$$x = 0$$
, $y = 4$

A: (–2, 5)

$$\mathbf{c}$$
 $y = f(2x)$

Horizontal stretch, scale factor $\frac{1}{2}$

y = -f(2x). Reflection in the x-axis.

Asymptotes:
$$x = 1$$
, $y = 0$

$$A:(0,-1)$$

3 d y = f(|x|) can be written

$$y = \begin{cases} f(x), & x \ge 0 \\ f(-x), & x < 0 \end{cases}$$

y = f(-x) is a reflection of

y = f(x) in the y-axis.

Hence, y = f(|x|) is the following:

Asymptotes are x = -2, x = 2 and y = 0.

A:(0,1)

4 a

b i $(2+4, -9 \times 2) = (6, -18)$

ii
$$(2 \times \frac{1}{2}, -9) = (1, -9)$$

iii $(2, -9 \times -1) = (2, 9)$

c y = g(|x|) can be written

$$y = \begin{cases} g(x) = (x-2)^2 - 9, & x \ge 0 \\ g(-x) = (x+2)^2 - 9, & x < 0 \end{cases}$$

y = g(-x) is a reflection of

y = g(x) in the y-axis.

Hence, y = g(|x|) is the following:

5 a $y = 2 \sin x$ is a vertical stretch of $y = \sin x$ by a scale factor 2.

b minimum $A(-90^{\circ}, -2)$ and maximum $B(90^{\circ}, 2)$

5 **c** i h(x-90) is a horizontal translation of $+90^{\circ}$ h(x-90)+1 is a vertical translation of +1.

ii $h\left(\frac{1}{2}x\right)$ is a horizontal stretch scale factor 2 $\frac{1}{4}h\left(\frac{1}{2}x\right)$ is a vertical stretch scale factor $\frac{1}{4}$

iii h(-x) is a reflection in the y-axis |h(-x)| causes the part of the graph below the x-axis to be reflected in the x-axis.

 $\frac{1}{2}|h(-x)|$ is a vertical stretch scale factor $\frac{1}{2}$

6 $y = f(\frac{1}{3}x + 2)$ can be written as $y = f(\frac{1}{3}(x + 6))$ $y = f(\frac{1}{3}x)$: Horizontal stretch, scale factor 3

 $y = f(\frac{1}{3}(x+6))$: Horizontal translation of -6

So O is transformed to (-6,0) A is transformed to (6,-2)B is transformed to (15,0)