Sequences and series Mixed exercise 3

1 a Let a =first term and r =common ratio.

$$3rd term = 27 \Rightarrow ar^2 = 27 \qquad (1)$$

$$6th term = 8 \Rightarrow ar^5 = 8 \tag{2}$$

Equation (2) ÷ Equation (1):

$$\frac{\alpha r^{5}}{\alpha r^{2}} = \frac{8}{27} \quad \left(\frac{r^{5}}{r^{2}} = r^{5-2}\right)$$

$$r^{3} = \frac{8}{27}$$

$$r = \sqrt[3]{\frac{8}{27}} = \frac{2}{3}$$

The common ratio is $\frac{2}{3}$.

b Substitute $r = \frac{2}{3}$ back into Equation (1):

$$a \times \left(\frac{2}{3}\right)^2 = 27$$

$$a \times \frac{4}{9} = 27$$

$$a = \frac{27 \times 9}{4}$$

$$a = 60.75$$

The first term is 60.75.

c Sum to infinity = $\frac{a}{1-r}$

$$\Rightarrow S_{\infty} = \frac{60.75}{1 - \frac{2}{3}} = \frac{60.75}{\frac{1}{3}} = 182.25$$

Sum to infinity is 182.25.

d Sum to ten terms $\frac{a(1-r^{10})}{1-r}$

So

$$S_{10} = \frac{60.75 \left(1 - \left(\frac{2}{3} \right)^{10} \right)}{\left(1 - \frac{2}{3} \right)} = \frac{60.75 \left(1 - \left(\frac{2}{3} \right)^{10} \right)}{\frac{1}{3}}$$
$$= 179.0895...$$

Difference between S_{10} and $S_{\infty} = 182.25 - 179.0895 = 3.16 (3 s.f.)$

2 a 2nd term is $80 \Rightarrow ar^{2-1} = 80$

$$ar = 80 \tag{1}$$

5th term is $5.12 \Rightarrow ar^{5-1} = 5.12$

$$ar^4 = 5.12$$
 (2)

Equation $(2) \div$ Equation (1):

$$\frac{\alpha r^4}{\alpha r} = \frac{5.12}{80}$$
$$r^3 = 0.064 \left(\sqrt[3]{r}\right)$$
$$r = 0.4$$

Hence common ratio = 0.4.

b Substitute r = 0.4 into Equation (1):

$$a \times 0.4 = 80 (\div 0.4)$$
$$a = 200$$

The first term in the series is 200.

 \mathbf{c} $S_{\infty} = \frac{a}{1-r} = \frac{200}{1-0.4} = \frac{200}{0.6} = 333\frac{1}{3}$

2 **d** Sum to *n* terms =
$$\frac{a(1-r^n)}{1-r}$$

So
$$S_{14} = \frac{200(1 - 0.4^{14})}{(1 - 0.4)} = 333.3324385$$

Required difference

$$S_{14} - S_{\infty} = 333.3324385 - 333\frac{1}{3}$$

= 0.0008947 = 8.95 × 10⁻⁴(3 s.f.)

3 a
$$u_n = 95 \left(\frac{4}{5}\right)^n$$

Replace *n* with
$$1 \Rightarrow u_1 = 95 \left(\frac{4}{5}\right)^1 = 76$$

Replace *n* with
$$2 \Rightarrow u_2 = 95 \left(\frac{4}{5}\right)^2 = 60.8$$

b Replace *n* with
$$21 \Rightarrow$$

$$u_{21} = 95 \left(\frac{4}{5}\right)^{21} = 0.876 \text{ (3 s.f.)}$$

$$\mathbf{c} \qquad \sum_{n=1}^{15} u_n = 76 + 60.8 + \dots + 95 \left(\frac{4}{5}\right)^{15}$$

A geometric series with a = 76, $r = \frac{4}{5}$.

Use
$$S_n = \frac{a(1-r^n)}{1-r}$$

$$\sum_{n=1}^{15} u_n = \frac{76\left(1 - \left(\frac{4}{5}\right)^{15}\right)}{1 - \frac{4}{5}} = \frac{76\left(1 - \left(\frac{4}{5}\right)^{15}\right)}{\frac{1}{5}}$$

$$\left(\div \frac{1}{5} \text{ is equivalent to} \times 5 \right)$$

$$\sum_{n=1}^{15} u_n = 76 \times 5 \times \left(1 - \left(\frac{4}{5} \right)^{15} \right)$$
$$= 366.63 = 367 \text{ (to 3 s.f.)}$$

d
$$S_{\infty} = \frac{a}{1-r} = \frac{76}{1-\frac{4}{5}} = \frac{76}{\frac{1}{5}} = 76 \times 5 = 380$$

Sum to infinity is 380.

4 a
$$u_n = 3\left(\frac{2}{3}\right)^n - 1$$

Replace n with $1 \Rightarrow$

$$u_1 = 3 \times \left(\frac{2}{3}\right)^1 - 1 = 2 - 1 = 1$$

Replace n with $2 \Rightarrow$

$$u_2 = 3 \times \left(\frac{2}{3}\right)^2 - 1 = 3 \times \frac{4}{9} - 1 = \frac{1}{3}$$

Replace *n* with $3 \Rightarrow$

$$u_3 = 3 \times \left(\frac{2}{3}\right)^3 - 1 = 3 \times \frac{8}{27} - 1 = -\frac{1}{9}$$

4 b
$$\sum_{n=1}^{15} u_n = \left(3 \times \left(\frac{2}{3}\right) - 1\right) + \left(3 \times \left(\frac{2}{3}\right)^2 - 1\right)$$

$$+ \left(3 \times \left(\frac{2}{3}\right)^3 - 1\right) + \dots + \left(3 \times \left(\frac{2}{3}\right)^{15} - 1\right)$$

$$= 3 \times \left(\frac{2}{3}\right) + 3 \times \left(\frac{2}{3}\right)^2 + 3 \times \left(\frac{2}{3}\right)^3 + \dots + 3 \times \left(\frac{2}{3}\right)^{15}$$
a geometric series with 15 terms
$$-1 - 1 - 1 - \dots - 1$$
15 times

where
$$a = 3 \times \frac{2}{3} = 2$$
 and $r = \frac{2}{3}$

Use
$$S_n = \frac{a(1-r^n)}{1-r}$$

$$\sum_{n=1}^{15} u_n = \frac{2\left(1 - \left(\frac{2}{3}\right)^{15}\right)}{1 - \frac{2}{3}} - 15 = 5.986... - 15$$
$$= -9.0137... = -9.014(4 \text{ s.f.})$$

$$u_{n+1} = 3 \times \left(\frac{2}{3}\right)^{n+1} - 1$$

$$= 3 \times \frac{2}{3} \times \left(\frac{2}{3}\right)^{n} - 1$$

$$= 2\left(\frac{2}{3}\right)^{n} - 1 = \frac{2u_{n} - 1}{2}$$

5 a Let a = first term and r = the common ratio of the series.

We are given

3rd term =
$$6.4 \Rightarrow ar^2 = 6.4$$
 (1)

4th term =
$$5.12 \Rightarrow ar^3 = 5.12$$
 (2)

Equation $(2) \div Equation (1)$:

$$\frac{\alpha r^3}{\alpha r^2} = \frac{5.12}{6.4}$$
$$r = 0.8$$

The common ratio is 0.8.

b Substitute r = 0.8 into Equation (1):

$$a \times 0.8^2 = 6.4$$
$$a = \frac{6.4}{0.8^2}$$
$$a = 10$$

The first term is 10.

c Use $S_{\infty} = \frac{a}{1-r}$ with a = 10 and r = 0.8.

$$S_{\infty} = \frac{10}{1 - 0.8} = \frac{10}{0.2} = 50$$

Sum to infinity is 50.

d
$$S_{25} = \frac{a(1-r^{25})}{1-r} = \frac{10(1-0.8^{25})}{1-0.8}$$

= 49.8111...

$$S_{\infty} - S_{25} = 50 - 49.8111...$$

= 0.189 (3 s.f.)

6 a
$$u_5 = 20\,000 \times 0.85^5 = £8874.11$$

b
$$20\,000\times0.85^n < 4000$$

$$0.85^{n} < 0.2$$

$$n > \frac{\log 0.2}{\log 0.85}$$

$$n > 9.9$$

So the value will be less than £4000 after 9.9 years.

7 a
$$\frac{p(2q+2)}{p(3q+1)} = \frac{p(2q-1)}{p(2q+2)}$$
$$(2q+2)^{2} = (2q-1)(3q+1)$$
$$4q^{2} + 8q + 4 = 6q^{2} - q - 1$$
$$2q^{2} - 9q - 5 = 0$$
$$(q-5)(2q+1) = 0$$
$$q = 5 \text{ or } q = -\frac{1}{2}$$

b
$$q = 5$$
, $S_{\infty} = 896$, $a = 16p$, $r = 0.75$

$$\frac{16p}{1 - 0.75} = 896$$

$$p = 14$$

$$a = 224$$

$$S_{12} = \frac{224(1 - 0.75^{12})}{1 - 0.75}$$

$$= 867.62$$

8 a
$$S = a + (a + d) + (a + 2d) + \dots + (a + (n - 2)d) + (a + (n - 1)d)$$

Turning series around:

$$S = (a + (n - 1)d) + (a + (n - 2)d) + \dots (a + d) + a$$

Adding the two sums:

$$2S = (2a + (n - 1)d) + (2a + (n - 1)d) + \dots (2a + (n - 1)d) + (2a + (n - 1)d)$$

There are *n* lots of (2a + (n-1)d):

$$2S = n \times (2a + (n-1)d)$$
$$(\div 2): \quad S = \frac{n}{2} (2a + (n-1)d)$$

b The first 100 natural numbers are 1, 2, 3, ... 100.

We need to find
$$S = 1 + 2 + 3 + \dots 99 + 100$$
.

This series is arithmetic with a = 1, d = 1, n = 100.

Using
$$S = \frac{n}{2} (2a + (n-1)d)$$
 with $a = 1$, $d = 1$ and $n = 100$ gives

$$S = \frac{100}{2} (2 \times 1 + (100 - 1) \times 1)$$
$$= \frac{100}{2} (2 + 99 \times 1)$$
$$= 50 \times 101 = 5050$$

$$\mathbf{9} \quad \sum_{r=1}^{n} (4r-3) = (4 \times 1 - 3) + (4 \times 2 - 3) \\
+ (4 \times 3 - 3) + \dots + (4 \times n - 3)$$

$$= \underbrace{1 + 5 + 9 + \dots + (4n - 3)}_{}$$

Arithmetic series with a = 1, d = 4.

Using
$$S_n = \frac{n}{2} (2a + (n-1)d)$$
 with $a = 1$, $d = 4$ gives

$$S_n = \frac{n}{2} (2 \times 1 + (n-1) \times 4) = \frac{n}{2} (2 + 4n - 4)$$
$$= \frac{n}{2} (4n - 2)$$
$$= n(2n - 1)$$

Solve $S_n = 2000$:

$$n(2n-1) = 2000$$
$$2n^2 - n = 2000$$
$$2n^2 - n - 2000 = 0$$

$$n = \frac{1 \pm \sqrt{1 - 4 \times 2 \times -2000}}{2 \times 2} = 31.87 \text{ or } -31.37$$

n must be positive, so n = 31.87.

If the sum has to be greater than 2000 then n = 32.

Let a =first term and d =common 10 a difference.

Sum of the first two terms = 47

$$\Rightarrow a + a + d = 47$$

$$\Rightarrow 2a + d = 47$$

30th term = -62

Using *n*th term = a + (n - 1)d

$$\Rightarrow a + 29d = -62$$

(Note: a + 12d is a common error here)

Our two simultaneous equations are

$$2a + d = 47$$
 (1)

$$a + 29d = -62$$
 (2)

$$2a + 58d = -124$$
 (3)

$$57d = -171 \qquad ((3) - (1))$$

$$d = -3$$

$$(\div 57)$$

 $((2) \times 2)$

Substitute d = -3 into (1):

$$2a - 3 = 47 \Rightarrow 2a = 50 \Rightarrow a = 25$$

Therefore, first term = 25 and common difference = -3.

b using
$$S_n = \frac{n}{2} (2a + (n-1)d)$$

$$S_{60} = \frac{60}{2} (2a + (60 - 1)d) = 30(2a + 59d)$$

Substituting a = 25, d = -3 gives

$$S_{60} = 30(2 \times 25 + 59 \times (-3))$$

$$=30(50-177)=30\times(-127)$$

$$= -3810$$

Sum of integers divisible by 3 which lie 11 a between 1 and 400

$$= 3 + 6 + 9 + 12 + ... + 399$$

This is an arithmetic series with a = 3, d = 3 and L = 399.

Using
$$L = a + (n-1)d$$

$$399 = 3 + (n-1) \times 3$$

$$399 = 3 + 3n - 3$$

$$399 = 3n$$

$$n = 133$$

Therefore, there are 133 of these integers up to 400.

$$S_n = \frac{n}{2}(a+L) = \frac{133}{2}(3+399)$$

$$=\frac{133}{2}\times402=26733$$

11 b Sum of integers not divisible by 3

$$= 1 + 2 + 4 + 5 + 7 + 8 + 10 + \dots + 400$$

$$= (1+2+3+4+...+399+400)$$

Arithmetic series with a=1, L=400, n=400

$$-\underbrace{(3+6+9+...+399)}_{\text{From part a, this equals 26 733}}$$

$$S_n = \frac{400}{2}(1+400)$$

$$=200 \times 401$$

$$= 80200$$

So sum of integers not divisible by 3

$$= 80200 - 26733$$

$$= 53467$$

12 Let the shortest side be x.

$$S_{10} = \frac{10}{2}(x+2x) = 675$$

$$5(3x) = 675$$

$$15x = 675$$

$$x = 45$$

Length of shortest side is 45 cm.

13

Sum =
$$4 + 8 + 12 + ... + 8n$$

 $\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$
1st 2nd 3rd 2nth

This is an arithmetic series with a = 4, d = 4 and n = 2n.

Using
$$S_n = \frac{n}{2} (2a + (n-1)d)$$
:

$$S_{2n} = \frac{2n}{2} (2 \times 4 + (2n-1) \times 4)$$

$$= n(8+8n-4)$$

$$= n(8n+4)$$

$$= n \times 4(2n+1)$$

$$= 4n(2n+1)$$

14 a Replacing *n* with $1 \Rightarrow U_2 = ku_1 - 4$

$$u_1 = 2 \Rightarrow u_2 = 2k - 4$$

Replacing *n* with $2 \Rightarrow u_3 = ku_2 - 4$

$$u_2 = 2k - 4 \Rightarrow u_3 = k(2k - 4) - 4$$

 $\Rightarrow u_3 = 2k^2 - 4k - 4$

b Substitute $u_3 = 26$

$$\Rightarrow 2k^2 - 4k - 4 = 26$$

$$\Rightarrow 2k^2 - 4k - 30 = 0 \qquad (\div 2)$$

$$\Rightarrow k^2 - 2k - 15 = 0 \qquad \text{(factorise)}$$

$$\Rightarrow (k - 5)(k + 3) = 0$$

$$\Rightarrow k = 5, -3$$

15 a Use *n*th term = a + (n-1)d:

5th term is $14 \Rightarrow a + 4d = 14$

Use 1st term = a, 2nd term = a + d, 3rd term = a + 2d:

sum of first three terms = -3

$$\Rightarrow$$
 $a+a+d+a+2d=-3$

$$\Rightarrow$$
 3*a* + 3*d* = -3 (÷3)

$$\Rightarrow a+d=-1$$

Our simultaneous equations are

$$a + 4d = 14$$
 (1)

$$a + d = -1$$
 (2)

$$(1) - (2)$$
: $3d = 15$ (÷3)

$$d = 5$$

Common difference = 5

Substitute d = 5 back into (2):

$$a + 5 = -1$$

$$a = -6$$

First term = -6

b *n*th term must be greater than 282

$$\Rightarrow$$
 $a + (n-1)d > 282$

$$\Rightarrow$$
 $-6 + 5 (n - 1) > 282 (+6)$

$$\Rightarrow$$
 5($n-1$) > 288 (÷5)

$$\Rightarrow (n-1) > 57.6 \tag{+1}$$

$$\Rightarrow n > 58.6$$

 \therefore least value of n = 59

16 a We know *n*th term = a + (n - 1)d

4th term is 3k

$$\Rightarrow$$
 $a + (4-1)d = 3k$

$$\Rightarrow$$
 $a + 3d = 3k$

We know
$$S_n = \frac{n}{2} (2a + (n-1)d)$$

Sum to 6 terms is 7k + 9, therefore

$$\frac{6}{2}(2a+(6-1)d)=7k+9$$

$$3(2a + 5d) = 7k + 9$$

$$6a + 15d = 7k + 9$$

The simultaneous equations are

$$a + 3d = 3k \tag{1}$$

$$6a + 15d = 7k + 9$$
 (2)

$$(1) \times 5: 5a + 15d = 15k$$
 (3)

$$(2) - (3) : 1a = -8k + 9$$

$$\Rightarrow a = 9 - 8k$$

First term is 9 - 8k.

b Substituting this in (1) gives

$$9-8k+3d = 3k$$
$$3d = 11k-9$$
$$d = \frac{11k-9}{3}$$

Common difference is $\frac{11k-9}{3}$.

c If the 7th term is 12, then

$$a + 6d = 12$$

Substitute values of a and d:

$$-8k+9+6 \times \left(\frac{11k-9}{3}\right) = 12$$

$$-8k+9+2(11k-9) = 12$$

$$-8k+9+22k-18 = 12$$

$$14k-9 = 12$$

$$14k = 21$$

$$k = \frac{21}{14}$$

$$= 1.5$$

d Calculate values of a and d first:

$$a = 9 - 8k = 9 - 8 \times 1.5 = 9 - 12 = -3$$

$$d = \frac{11k - 9}{3} = \frac{11 \times 1.5 - 9}{3} = \frac{16.5 - 9}{3} = \frac{7.5}{3}$$
$$= 2.5$$

$$S_{20} = \frac{20}{2} (2a + (20 - 1)d)$$

$$= 10(2a + 19d)$$

$$= 10(2 \times (-3) + 19 \times 2.5)$$

$$= 10(-6 + 47.5)$$

$$= 10 \times 41.5$$

$$= 415$$

Sum to 20 terms is 415.

17 a
$$a_1 = p$$

$$a_2 = \frac{1}{p}$$

$$a_3 = \frac{1}{\frac{1}{p}} = 1 \times \frac{p}{1} = p$$

$$a_4 = \frac{1}{p}$$

So the sequence is periodic with order 2.

17 b
$$\sum_{r=1}^{1000} a_n = \frac{1000}{2} \left(p + \frac{1}{p} \right)$$
$$= 500 \left(p + \frac{1}{p} \right)$$

18 a
$$a_1 = k$$

 $a_2 = 2k + 6$
 $a_3 = 2(2k + 6) + 6 = 4k + 18$
As the sequence is increasing:
 $a_1 < a_2 < a_3$
 $k < 2k + 6 < 4k + 18$
 $k > -6$

b
$$a_4 = 2(4k+18) + 6 = 8k + 42$$

c
$$\sum_{r=1}^{4} a_r = k + 2k + 6 + 4k + 18 + 8k + 42$$

= 15k + 66
= 3(5k + 22)
Therefore, $\sum_{r=1}^{4} a_r$ is divisible by 3.

19 a
$$a = 130$$
, $S_{\infty} = 650$

$$\frac{130}{1-r} = 650$$

$$130 = 650 - 650r$$

$$-520 = -650r$$

$$r = \frac{4}{5}$$

b
$$u_7 - u_8 = ar^6 - ar^7$$

= $130 \left(\frac{4}{5}\right)^6 - 130 \left(\frac{4}{5}\right)^7$
= 6.82

$$\mathbf{c} \quad S_7 = \frac{130(1 - 0.8^7)}{1 - 0.8}$$
$$= 513.69 \text{ (2 d.p.)}$$

$$\mathbf{d} \quad \frac{130(1-0.8^n)}{1-0.8} > 600$$

$$\frac{130(1-0.8^n)}{0.2} > 600$$

$$1-0.8^n > \frac{12}{13}$$

$$0.8^n < \frac{1}{13}$$

$$n\log 0.8 < -\log 13$$

$$n > \frac{-\log 13}{\log 0.8}$$

20 a
$$a = 25\ 000, r = 1.02$$

 $ar^2 = 25\ 000 \times 1.02^2$
 $= 26\ 010$

b
$$25\,000 \times 1.02^n > 50\,000$$

 $1.02^n > 2$
 $n \log 1.02 > \log 2$
 $n > \frac{\log 2}{\log 1.02}$

c *n* > 35.003 Initial year was 2012, and *n* is an integer, so 2048.

d
$$S_8 = \frac{25\,000(1.02^8 - 1)}{1.02 - 1} = 214\,574.22$$

= 214 574

e People may visit the doctor more frequently than once a year, some may not visit at all. It depends on their state of health.

21 a 3, 5, 7, ...
$$n$$
th term = $(3 + (n-1)2) = 2n + 1$

b
$$2k + 1 = 301$$
 $k = 150$

c i
$$S_q = \frac{q}{2}(2 \times 3 + (q-1)2) = p$$

 $q(q+2) = p$
 $q^2 + 2q = p$
 $q^2 + 2q - p = 0$

21 c ii
$$p > 1520$$

 $q^2 + 2q = p$
 $q^2 + 2q > 1520$
 $q^2 + 2q - 1520 > 0$
 $q^2 + 2q - 1520 = 0$
 $(q - 38)(q + 40) = 0$
 $q = 38 \text{ or } -40$
As $q^2 + 2q - 1520 > 0$, $q > 38$
minimum numbers of rows is 39.

22 a
$$ar = -3$$
, $S_{\infty} = 6.75$

$$a = -\frac{3}{r}$$

$$\frac{a}{1-r} = 6.75$$

$$-\frac{3}{r} \times \frac{1}{1-r} = 6.75$$

$$\frac{-3}{r-r^2} = 6.75$$

$$6.75r - 6.75r^2 + 3 = 0$$

$$27r^2 - 27r - 12 = 0$$

b $9r^2 - 9r - 4 = 0$

$$(3r-4)(3r+1) = 0$$

$$r = \frac{4}{3} \text{ or } r = -\frac{1}{3}$$
As the series is convergent, $|r| < 1$ so
$$r = -\frac{1}{3}$$

22 c
$$ar = -3$$
 so $a = 9$

$$S_5 = \frac{9\left(1 - \left(-\frac{1}{3}\right)^5\right)}{1 + \frac{1}{3}}$$

$$= \frac{27}{4}\left(1 - \left(-\frac{1}{3}\right)^5\right)$$

$$= 6.78$$

Challenge

$$\mathbf{a} \quad u_{n+2} = 5u_{n+1} - 6u_n$$

$$= 5[p(3^{n+2}) + q(2^{n+2})] - 6[p(3^n) + q(2^n)]$$

$$= 5\left(p\left(\frac{1}{3}\right)(3^{n+2}) + q\left(\frac{1}{2}\right)(2^{n+2})\right)$$

$$-6\left(p\left(\frac{1}{3}\right)^2(3^{n+2}) + q\left(\frac{1}{2}\right)^2(2^{n+2})\right)$$

$$= \left(\frac{5}{3}p - \frac{6}{9}p\right)(3^{n+2}) + \left(\frac{5}{2}q - \frac{6}{4}q\right)(2^{n+2})$$

$$= p(3^{n+2}) + q(2^{n+2})$$

b
$$u_1 = 5 = p(3^1) + q(2^1)$$

 $u_2 = 12 = p(3^2) + q(2^2)$
 $5 = 3p + 2q$
 $12 = 9p + 4q$

Solving simultaneously:

$$10 = 6p + 4q (1)$$

$$12 = 9p + 4q (2)$$

$$(2) - (1):$$

$$2 = 3p$$

$$p = \frac{2}{3}$$

$$2q = 5 - 2 = 3$$

$$q = \frac{3}{2}$$
Therefore, $u_n = \left(\frac{2}{3}\right)3^n + \left(\frac{3}{2}\right)2^n$

c
$$u_{100} = \left(\frac{2}{3}\right) 3^{100} + \left(\frac{3}{2}\right) 2^{100}$$

= 3.436 × 10⁴⁷
So it contains 48 digits.