Trigonometric Functions 6B

1 a

b

c

2 a

b 2 solutions

3 a

b You can see that the graphs of $y = \sec \theta$ and $y = -\cos \theta$ do not meet, so $\sec \theta = -\cos \theta$ has no solutions.

The same result can be found algebraically

$$\sec \theta = -\cos \theta$$

$$\Rightarrow \frac{1}{\cos \theta} = -\cos \theta$$

$$\Rightarrow \cos^2 \theta = -1$$

There are no solutions of this equation for real θ .

4 a

b The curves meet at the maxima and minima of $y = \sin 2\theta$, and on the θ -axis at odd integer multiples of 90°.

In the interval $0 \le \theta \le 360^{\circ}$ there are 6 intersections. So there are 6 solutions of $\cot \theta = \sin 2\theta$ in the interval $0 \le \theta \le 360^{\circ}$

5 a

- **b** $y = \cot(\theta + 90^\circ)$ is a reflection in the θ -axis of $y = \tan \theta$, so $\cot(\theta + 90^\circ) = -\tan \theta$
- 6 **a** i The graph of $y = \tan\left(\theta + \frac{\pi}{2}\right)$ is the same as that of $y = \tan\theta$ translated by the vector $\begin{pmatrix} -\frac{\pi}{2} \\ 0 \end{pmatrix}$, i.e by $\frac{\pi}{2}$ to the left.
 - ii The graph of $y = \cot(-\theta)$ is the same as that of $y = \cot \theta$ reflected in the y-axis.

- iii The graph of $y = \csc\left(\theta + \frac{\pi}{4}\right)$ is the same as that of $y = \csc\theta$ translated by the vector $\begin{pmatrix} -\frac{\pi}{4} \\ 0 \end{pmatrix}$
- iv The graph of $\sec\left(\theta \frac{\pi}{4}\right)$ is the same as that of $y = \sec\theta$ translated by the vector $\begin{pmatrix} \frac{\pi}{4} \\ 0 \end{pmatrix}$

(reflection of $y = \cot \theta$ in the y-axis) $\tan \left(\theta + \frac{\pi}{2}\right) = \cot(-\theta)$ 6 b

$$\csc\left(\theta + \frac{\pi}{4}\right) = \sec\left(\theta - \frac{\pi}{4}\right)$$

7 a A stretch of $y = \sec \theta$ in the θ direction with scale factor $\frac{1}{2}$ Minimum at $(180^{\circ}, 1)$ Maxima at $(90^{\circ}, -1)$ and $(270^{\circ}, -1)$ It meets the y-axis at (0, 1)

b Reflection in θ -axis of $y = \csc \theta$ Minimum at $(270^{\circ}, 1)$ Maximum at $(90^{\circ}, -1)$

c Translation of $y = \sec \theta$ by the vector $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$, i.e. +1 in the y direction. It meets x-axis at (180°, 0) There is a maximum at (180°, 0)

It meets the y-axis at (0, 2)

d Translation of $y = \csc \theta$ by the

vector
$$\begin{pmatrix} 30 \\ 0 \end{pmatrix}$$

Minimum at $(120^{\circ}, 1)$

Maximum at $(300^{\circ}, -1)$

It meets the y-axis at (0, -2)

7 e $y = 2\sec(\theta - 60^\circ)$ is $y = \sec \theta$

translated by the vector $\begin{pmatrix} 60 \\ 0 \end{pmatrix}$ and

then stretched by a scale factor 2 in the y direction.

Minimum at (60°, 2)

Maximum at $(240^{\circ}, -2)$

It meets the y-axis at (0, 4)

 \mathbf{f} $y = \csc(2\theta + 60^{\circ})$ is $y = \csc\theta$

translated by the vector $\begin{pmatrix} -60\\ 0 \end{pmatrix}$ and

then stretched by a scale factor $\frac{1}{2}$ in the θ direction.

Minima at (15°, 1), (195°, 1)

Maxima at $(105^{\circ}, -1), (285^{\circ}, -1)$

It meets the y-axis at (0, 1.155)

g $y = -\cot 2\theta$ is $y = \cot \theta$ stretched by a scale factor $\frac{1}{2}$ in the θ direction and then reflected in the x-axis. It meets the θ -axis at (45°, 0), (135°, 0), (225°, 0) and (315°, 0)

h $y = 1 - 2\sec\theta = -2\sec\theta + 1$ is $y = \sec\theta$ stretched by a scale factor 2 in the y direction, reflected in the x-axis and then translated by the vector $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Minima at $(180^{\circ} 3)$

Minima at $(180^{\circ}, 3)$ Maxima at $(0,-1), (360^{\circ},-1)$ It meets the *y*-axis at (0,-1)

- 8 a The period of $\sec \theta$ is 2π radians $y = \sec 3\theta$ is a stretch of $y = \sec \theta$ with scale factor $\frac{1}{3}$ in the θ direction. So the period of $\sec 3\theta$ is $\frac{2\pi}{3}$
 - **b** $\csc \theta$ has a period of 2π $\csc \frac{1}{2}\theta$ is a stretch of $\csc \theta$ in the θ direction with scale factor 2. So the period of $\csc \frac{1}{2}\theta$ is 4π
 - c $\cot \theta$ has a period of π $2\cot \theta$ is a stretch in the *y* direction by scale factor 2. So the periodicity is not affected. The period of $2\cot \theta$ is π
 - **d** $\sec \theta$ has a period of 2π $\sec(-\theta)$ is a reflection in the *y*-axis. So the periodicity is not affected. The period of $\sec(-\theta)$ is 2π
- 9 **a** $y = 3 + 5 \csc \theta$ is $y = \csc \theta$ stretched by a scale factor 5 in the y direction and then translated by the vector $\begin{pmatrix} 0 \\ 3 \end{pmatrix}$

b -2 < k < 8

10 a

- **b** The θ coordinates at points at which the gradient is zero are at the maxima and minima. These are $\theta = -\pi$, 0, π , 2π
- **c** Minimum value of $\frac{1}{1+2\sec\theta}$

is where $1+2\sec\theta$ is a maximum.

So minimum value of $\frac{1}{1+2\sec\theta}$

is
$$\frac{1}{-1} = -1$$

The first positive value of θ where this occurs is when $\theta = \pi$ (see diagram)

Maximum value of $\frac{1}{1+2\sec\theta}$

is where $1+2\sec\theta$ is a minimum.

So maximum value of $\frac{1}{1+2\sec\theta}$ is $\frac{1}{3}$

The first positive value of θ where this occurs is when $\theta = 2\pi$ (see diagram)