Trigonometric Functions 6C

1 a
$$\frac{1}{\sin^3 \theta} = \left(\frac{1}{\sin \theta}\right)^3 = \csc^3 \theta$$

$$\mathbf{b} \quad \frac{4}{\tan^6 \theta} = 4 \times \left(\frac{1}{\tan \theta}\right)^6 = 4 \cot^6 \theta$$

$$\mathbf{c} \quad \frac{1}{2\cos^2\theta} = \frac{1}{2} \times \left(\frac{1}{\cos\theta}\right)^2 = \frac{1}{2}\sec^2\theta$$

$$\mathbf{d} \frac{1-\sin^2\theta}{\sin^2\theta} = \frac{\cos^2\theta}{\sin^2\theta}$$
(using $\sin^2\theta + \cos^2\theta \equiv 1$)

So
$$\frac{1-\sin^2\theta}{\sin^2\theta} = \left(\frac{\cos\theta}{\sin\theta}\right)^2 = \cot^2\theta$$

$$\mathbf{e} \quad \frac{\sec \theta}{\cos^4 \theta} = \frac{1}{\cos \theta} \times \frac{1}{\cos^4 \theta} = \frac{1}{\cos^5 \theta}$$
$$= \left(\frac{1}{\cos \theta}\right)^5 = \sec^5 \theta$$

$$\mathbf{f} \quad \sqrt{\csc^3 \theta \cot \theta \sec \theta}$$

$$= \sqrt{\frac{1}{\sin^3 \theta}} \times \frac{\cos \theta}{\sin \theta} \times \frac{1}{\cos \theta} = \sqrt{\frac{1}{\sin^4 \theta}}$$

$$= \frac{1}{\sin^2 \theta} = \left(\frac{1}{\sin \theta}\right)^2 = \csc^2 \theta$$

$$\mathbf{g} \quad \frac{2}{\sqrt{\tan \theta}} = 2 \times \frac{1}{(\tan \theta)^{\frac{1}{2}}} = 2 \cot^{\frac{1}{2}} \theta$$

$$\mathbf{h} \quad \frac{\csc^2 \theta \tan^2 \theta}{\cos \theta} = \frac{1}{\sin^2 \theta} \times \frac{\sin^2 \theta}{\cos^2 \theta} \times \frac{1}{\cos \theta}$$
$$= \left(\frac{1}{\cos \theta}\right)^3 = \sec^3 \theta$$

2 a
$$5\sin x = 4\cos x$$

$$\Rightarrow 5 = \frac{4\cos x}{\sin x} \text{ (divide by } \sin x)$$

$$\Rightarrow \frac{5}{4} = \cot x \text{ (divide by 4)}$$

b
$$\tan x = -2$$

$$\Rightarrow \frac{1}{\tan x} = \frac{1}{-2}$$

$$\Rightarrow \cot x = -\frac{1}{2}$$

c
$$3\frac{\sin x}{\cos x} = \frac{\cos x}{\sin x}$$

 $\Rightarrow 3\sin^2 x = \cos^2 x$
(multiply by $\sin x \cos x$)
 $\Rightarrow 3 = \frac{\cos^2 x}{\sin^2 x}$
(divide by $\sin^2 x$)

$$\Rightarrow \left(\frac{\cos x}{\sin x}\right)^2 = 3$$
$$\Rightarrow \cot^2 x = 3$$
$$\Rightarrow \cot x = \pm \sqrt{3}$$

3 a
$$\sin \theta \cot \theta = \sin \theta \times \frac{\cos \theta}{\sin \theta} = \cos \theta$$

b
$$\tan \theta \cot \theta = \tan \theta \times \frac{1}{\tan \theta} = 1$$

$$\mathbf{c} \quad \tan 2\theta \csc 2\theta = \frac{\sin 2\theta}{\cos 2\theta} \times \frac{1}{\sin 2\theta}$$
$$= \frac{1}{\cos 2\theta} = \sec 2\theta$$

$$\mathbf{d} \quad \cos \theta \sin \theta (\cot \theta + \tan \theta)$$

$$= \cos \theta \sin \theta \left(\frac{\cos \theta}{\sin \theta} + \frac{\sin \theta}{\cos \theta} \right)$$

$$= \cos^2 \theta + \sin^2 \theta = 1$$

e
$$\sin^3 x \csc x + \cos^3 x \sec x$$

= $\sin^3 x \times \frac{1}{\sin x} + \cos^3 x \times \frac{1}{\cos x}$
= $\sin^2 x + \cos^2 x = 1$

3 f
$$\sec A - \sec A \sin^2 A$$

 $= \sec A(1 - \sin^2 A)$ (factorise)
 $= \frac{1}{\cos A} \times \cos^2 A$
(using $\sin^2 A + \cos^2 A \equiv 1$)
 $= \cos A$

$$\mathbf{g} \quad \sec^2 x \cos^5 x + \cot x \csc x \sin^4 x$$

$$= \frac{1}{\cos^2 x} \times \cos^5 x + \frac{\cos x}{\sin x} \times \frac{1}{\sin x} \times \sin^4 x$$

$$= \cos^3 x + \sin^2 x \cos x$$

$$= \cos x (\cos^2 x + \sin^2 x)$$

$$= \cos x \quad (\text{since } \cos^2 x + \sin^2 x \equiv 1)$$

4 a LHS =
$$\cos \theta + \sin \theta \tan \theta$$

= $\cos \theta + \sin \theta \frac{\sin \theta}{\cos \theta}$
= $\frac{\cos^2 \theta + \sin^2 \theta}{\cos \theta}$
= $\frac{1}{\cos \theta}$ (using $\sin^2 \theta + \cos^2 \theta = 1$)
= $\sec \theta = RHS$

b LHS =
$$\cot \theta + \tan \theta$$

= $\frac{\cos \theta}{\sin \theta} + \frac{\sin \theta}{\cos \theta}$
= $\frac{\cos^2 \theta + \sin^2 \theta}{\sin \theta \cos \theta}$
= $\frac{1}{\sin \theta \cos \theta}$
= $\frac{1}{\sin \theta} \times \frac{1}{\cos \theta}$
= $\csc \theta \sec \theta = RHS$

c LHS =
$$\csc \theta - \sin \theta$$

= $\frac{1}{\sin \theta} - \sin \theta$
= $\frac{1 - \sin^2 \theta}{\sin \theta}$
= $\frac{\cos^2 \theta}{\sin \theta}$
= $\cos \theta \times \frac{\cos \theta}{\sin \theta}$
= $\cos \theta \cot \theta = \text{RHS}$

d LHS
$$\equiv (1 - \cos x)(1 + \sec x)$$

$$\equiv 1 - \cos x + \sec x - \cos x \sec x$$
(multiplying out)
$$\equiv \sec x - \cos x \text{ (as } \cos x \sec x = 1)$$

$$\equiv \frac{1}{\cos x} - \cos x$$

$$\equiv \frac{1 - \cos^2 x}{\cos x}$$

$$\equiv \frac{\sin^2 x}{\cos x}$$

$$\equiv \sin x \times \frac{\sin x}{\cos x}$$

$$\equiv \sin x \tan x \equiv \text{RHS}$$

e LHS =
$$\frac{\cos x}{1 - \sin x} + \frac{1 - \sin x}{\cos x}$$

= $\frac{\cos^2 x + (1 - \sin x)^2}{(1 - \sin x)\cos x}$
= $\frac{\cos^2 x + (1 - 2\sin x + \sin^2 x)}{(1 - \sin x)\cos x}$
= $\frac{2 - 2\sin x}{(1 - \sin x)\cos x}$
(using $\sin^2 x + \cos^2 x = 1$)
= $\frac{2(1 - \sin x)}{(1 - \sin x)\cos x}$
(factorising)
= $\frac{2}{\cos x}$
= $2\sec x = \text{RHS}$

f LHS =
$$\frac{\cos \theta}{1 + \cot \theta}$$

= $\frac{\cos \theta}{1 + \frac{1}{\tan \theta}}$
= $\frac{\cos \theta}{\frac{\tan \theta + 1}{\tan \theta}}$
= $\frac{\cos \theta \tan \theta}{1 + \tan \theta}$
= $\frac{\cos \theta \times \frac{\sin \theta}{\cos \theta}}{1 + \tan \theta}$
= $\frac{\sin \theta}{1 + \tan \theta}$ = RHS

5 **a**
$$\sec \theta = \sqrt{2}$$

$$\Rightarrow \frac{1}{\cos \theta} = \sqrt{2}$$

$$\Rightarrow \cos \theta = \frac{1}{\sqrt{2}}$$

Calculator value is $\theta = 45^{\circ}$

 $\cos \theta$ is positive

 $\Rightarrow \theta$ is in 1st and 4th quadrants

Solutions are 45°, 315°

b
$$\csc \theta = -3$$

$$\Rightarrow \frac{1}{\sin \theta} = -3$$

$$\Rightarrow \sin \theta = -\frac{1}{3}$$

Calculator value is $\theta = -19.47^{\circ}$ (2 d.p.) $\sin \theta$ is negative

 $\Rightarrow \theta$ is in 3rd and 4th quadrants

Solutions are 199°, 341° (3 s.f.)

c
$$5 \cot \theta = -2$$

$$\Rightarrow \cot \theta = -\frac{2}{5}$$

$$\Rightarrow \tan \theta = -\frac{5}{2}$$

Calculator value is $\theta = -68.20^{\circ}$ (2 d.p.)

 $\tan \theta$ is negative

 $\Rightarrow \theta$ is in 2nd and 4th quadrants

Solutions are 112°, 292° (3 s.f.)

d
$$\csc \theta = 2$$

$$\Rightarrow \frac{1}{\sin \theta} = 2$$

$$\Rightarrow \sin \theta = \frac{1}{2}$$

Calculator value is $\theta = 30^{\circ}$

 $\sin \theta$ is positive

 $\Rightarrow \theta$ is in 1st and 2nd quadrants

Solutions are 30°, 150°

e
$$3\sec^2\theta = 4$$

$$\Rightarrow \sec^2 \theta = \frac{4}{3}$$

$$\Rightarrow \cos^2 \theta = \frac{3}{4}$$

$$\Rightarrow \cos \theta = \pm \frac{\sqrt{3}}{2}$$

Calculator value for $\cos \theta = \frac{\sqrt{3}}{2}$ is $\theta = 30^{\circ}$

As $\cos \theta$ is \pm , θ is in all four quadrants Solutions are 30°, 150°, 210°, 330°

f $5\cos\theta = 3\cot\theta$

$$\Rightarrow 5\cos\theta = 3\frac{\cos\theta}{\sin\theta}$$

Do not cancel $\cos \theta$ on each side.

Multiply through by $\sin \theta$.

$$\Rightarrow 5\cos\theta\sin\theta = 3\cos\theta$$

$$\Rightarrow 5\cos\theta\sin\theta - 3\cos\theta = 0$$

$$\Rightarrow \cos\theta(5\sin\theta - 3) = 0$$
 (factorise)

So
$$\cos \theta = 0$$
 or $\sin \theta = \frac{3}{5}$

When
$$\cos \theta = 0$$
, $\theta = 90^{\circ}$, 270°

When
$$\sin \theta = \frac{3}{5}$$
, $\theta = 36.9^{\circ}$, 143° (3 s.f.)

Solutions are 36.9°, 90°, 143°, 270°

5 g
$$\cot^2 \theta - 8 \tan \theta = 0$$

$$\Rightarrow \frac{1}{\tan^2 \theta} - 8 \tan \theta = 0$$

$$\Rightarrow 1 - 8 \tan^3 \theta = 0$$

$$\Rightarrow 8 \tan^3 \theta = 1$$

$$\Rightarrow \tan^3 \theta = \frac{1}{8}$$

$$\Rightarrow \tan \theta = \frac{1}{2}$$

Calculator value is $\theta = 26.57^{\circ}$ (2 d.p.) $\tan \theta$ is positive

 $\Rightarrow \theta$ is in 1st and 3rd quadrants

Solutions are 26.57° and $(180^{\circ} + 26.57^{\circ})$

So solutions are 26.6°, 207° (3 s.f.)

h
$$2\sin\theta = \csc\theta$$

$$\Rightarrow 2\sin\theta = \frac{1}{\sin\theta}$$

$$\Rightarrow \sin^2 \theta = \frac{1}{2}$$

$$\Rightarrow \sin \theta = \pm \frac{1}{\sqrt{2}}$$

Calculator value for $\sin \theta = \frac{1}{\sqrt{2}}$ is $\theta = 45^{\circ}$

Solutions are in all four quadrants Solutions are 45°, 135°, 225°, 315°

6 a
$$\csc \theta = 1$$

$$\Rightarrow \sin \theta = 1$$

$$\Rightarrow \theta = 90^{\circ}$$

b
$$\sec \theta = -3$$

$$\Rightarrow \cos \theta = -\frac{1}{3}$$

Calculator value is $\theta = 109^{\circ}$ (3 s.f.)

 $\cos \theta$ is negative

 $\Rightarrow \theta$ is in 2nd and 3rd quadrants

Solutions are 109°, -109° (3 s.f.)

$$\mathbf{c} \quad \cot \theta = 3.45$$

$$\Rightarrow \frac{1}{\tan \theta} = 3.45$$

$$\Rightarrow \tan \theta = \frac{1}{3.45} = 0.2899 \text{ (4 d.p.)}$$

Calculator value is $\theta = 16.16^{\circ}$ (2 d.p.)

 $\tan \theta$ is positive

 $\Rightarrow \theta$ is in 1st and 3rd quadrants

Solutions are 16.2° and $(-180^{\circ}+16.2^{\circ})$

So solutions are 16.2° , -164° (3 s.f.)

6 d
$$2\csc^2\theta - 3\csc\theta = 0$$

$$\Rightarrow$$
 cosec $\theta(2 \csc \theta - 3) = 0$ (factorise)

$$\Rightarrow$$
 cosec $\theta = 0$ or cosec $\theta = \frac{3}{2}$

$$\Rightarrow \sin \theta = \frac{2}{3}$$

 $\csc \theta = 0$ has no solutions

Calculator value for $\sin \theta = \frac{2}{3}$ is $\theta = 41.8^{\circ}$

 θ is in 1st and 2nd quadrants

Solutions are 41.8°, (180 – 41.8)°

So solutions are 41.8°, 138° (3 s.f.)

$$e \sec \theta = 2\cos \theta$$

$$\Rightarrow \frac{1}{\cos \theta} = 2\cos \theta$$

$$\Rightarrow \cos^2 \theta = \frac{1}{2}$$

$$\Rightarrow \cos \theta = \pm \frac{1}{\sqrt{2}}$$

Calculator value for $\cos \theta = \frac{1}{\sqrt{2}}$ is $\theta = 45^{\circ}$

 θ is in all quadrants, but remember that solutions required for $-180^{\circ} \le \theta \le 180^{\circ}$

Solutions are $\pm 45^{\circ}$, $\pm 135^{\circ}$

f $3\cot\theta = 2\sin\theta$

$$\Rightarrow 3 \frac{\cos \theta}{\sin \theta} = 2 \sin \theta$$

$$\Rightarrow 3\cos\theta = 2\sin^2\theta$$

$$\Rightarrow 3\cos\theta = 2(1-\cos^2\theta)$$

(use
$$\sin^2 \theta + \cos^2 \theta \equiv 1$$
)

$$\Rightarrow 2\cos^2\theta + 3\cos\theta - 2 = 0$$

$$\Rightarrow (2\cos\theta - 1)(\cos\theta + 2) = 0$$

$$\Rightarrow \cos \theta = \frac{1}{2} \text{ or } \cos \theta = -2$$

As $\cos \theta = -2$ has no solutions, $\cos \theta = \frac{1}{2}$

Solutions are $\pm 60^{\circ}$

g
$$\csc 2\theta = 4$$

$$\Rightarrow \sin 2\theta = \frac{1}{4}$$

Remember that solutions are required

in the interval $-180^{\circ} \le \theta \le 180^{\circ}$

So
$$-360^{\circ} \le 2\theta \le 360^{\circ}$$

Calculator value for $\sin 2\theta = \frac{1}{4}$ is

$$2\theta = 14.48^{\circ} (2 \text{ d.p.})$$

 $\sin 2\theta$ is positive

 \Rightarrow 2 θ is in 1st and 2nd quadrants

$$2\theta = -194.48^{\circ}, -345.52^{\circ},$$

$$\theta = -97.2^{\circ}, -172.8^{\circ}, 7.24^{\circ}, 82.76^{\circ}$$

$$=-173^{\circ}$$
, -97.2° , 7.24° , 82.8° (3 s.f.)

6 h
$$2 \cot^2 \theta - \cot \theta - 5 = 0$$

As this quadratic in $\cot \theta$ does not factorise, use the quadratic formula

$$\cot \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

(You could change $\cot \theta$ to $\frac{1}{\tan \theta}$ and work with the quadratic

$$5\tan^2\theta + \tan\theta - 2 = 0)$$

So
$$\cot \theta = \frac{1 \pm \sqrt{41}}{4}$$

$$=-1.3508$$
, 1.8508 (4 d.p.)

So
$$\tan \theta = -0.7403$$
, 0.5403 (4 d.p.)

The calculator value for $\tan \theta = -0.7403$ is $\theta = -36.51^{\circ}$ (2 d.p.)

Solutions are -36.5° , 143° (3 s.f.).

The calculator value for $\tan \theta = 0.5403$ is $\theta = 28.38^{\circ}$ (2 d.p.)

Solutions are 28.4° , $(-180 + 28.4)^{\circ}$

Total set of solutions is

7 **a**
$$\sec \theta = -1$$

$$\Rightarrow \cos \theta = -1$$

$$\Rightarrow \theta = \pi$$

(refer to graph of $y = \cos \theta$)

b
$$\cot \theta = -\sqrt{3}$$

 $\Rightarrow \tan \theta = -\frac{1}{\sqrt{3}}$

Calculator solution is
$$-\frac{\pi}{6}$$

(you should know that $\tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}$)

$$-\frac{\pi}{6}$$
 is not in the interval

Solutions are
$$\pi - \frac{\pi}{6}$$
, $2\pi - \frac{\pi}{6} = \frac{5\pi}{6}$, $\frac{11\pi}{6}$

$$\mathbf{c} \quad \csc \frac{\theta}{2} = \frac{2\sqrt{3}}{3}$$

$$\Rightarrow \sin\frac{\theta}{2} = \frac{3}{2\sqrt{3}} = \frac{\sqrt{3}}{2}$$

Remember that $0 \le \theta \le 2\pi$

so
$$0 \le \frac{\theta}{2} \le \pi$$

First solution for $\sin \frac{\theta}{2} = \frac{\sqrt{3}}{2}$ is $\frac{\theta}{2} = \frac{\pi}{3}$

So
$$\frac{\theta}{2} = \frac{\pi}{3}$$
, $\frac{2\pi}{3}$
 $\Rightarrow \theta = \frac{2\pi}{3}$, $\frac{4\pi}{3}$

7 **d**
$$\sec \theta = \sqrt{2} \tan \theta$$

$$\Rightarrow \frac{1}{\cos \theta} = \sqrt{2} \frac{\sin \theta}{\cos \theta}$$

$$\Rightarrow 1 = \sqrt{2} \sin \theta \qquad (\cos \theta \neq 0)$$

$$\Rightarrow \sin \theta = \frac{1}{\sqrt{2}}$$
Solutions are $\frac{\pi}{4}$, $\frac{3\pi}{4}$

8 a In the right-angled triangle ABD

$$\frac{AB}{AD} = \cos \theta$$

$$\Rightarrow AD = \frac{6}{\cos \theta} = 6\sec \theta$$

In the right-angled triangle ACB

$$\frac{AC}{AB} = \cos \theta$$

$$\Rightarrow AC = 6\cos \theta$$

$$CD = AD - AC$$

$$= 6\sec \theta - 6\cos \theta = 6(\sec \theta - \cos \theta)$$

b As
$$16 = 6\sec\theta - 6\cos\theta$$

$$\Rightarrow 8 = \frac{3}{\cos\theta} - 3\cos\theta$$

$$\Rightarrow 8\cos\theta = 3 - 3\cos^2\theta$$

$$\Rightarrow 3\cos^2\theta + 8\cos\theta - 3 = 0$$

$$\Rightarrow (3\cos\theta - 1)(\cos\theta + 3) = 0$$

$$\Rightarrow \cos\theta = \frac{1}{3} \quad \text{as } \cos\theta \neq -3$$
From (a) $AC = 6\cos\theta = 6 \times \frac{1}{3} = 2 \text{ cm}$

9 a
$$\frac{\cos c x - \cot x}{1 - \cos x} = \frac{\frac{1}{\sin x} - \frac{\cos x}{\sin x}}{1 - \cos x}$$
$$= \frac{1}{\sin x} \times \frac{1 - \cos x}{1 - \cos x}$$
$$= \csc x$$

b By part a equation becomes

$$\cos \cot x = 2$$

$$\Rightarrow \frac{1}{\sin x} = 2$$

$$\Rightarrow \sin x = \frac{1}{2}$$

sin *x* is positive, so *x* is in 1st and 2nd quadrants

$$x = \frac{\pi}{6}, \frac{5\pi}{6}$$

10 a
$$\frac{\sin x \tan x}{1 - \cos x} - 1 = \frac{\sin^2 x}{\cos x (1 - \cos x)} - 1$$
$$= \frac{\sin^2 x - \cos x + \cos^2 x}{\cos x (1 - \cos x)}$$
$$= \frac{1 - \cos x}{\cos x (1 - \cos x)}$$
$$= \frac{1}{\cos x}$$
$$= \sec x$$

b Need to solve $\sec x = -\frac{1}{2}$ $\Rightarrow \cos x = -2$ which has no solutions.

11
$$\frac{1+\cot x}{1+\tan x} = 5$$

$$\Rightarrow \frac{1+\frac{\cos x}{\sin x}}{1+\frac{\sin x}{\cos x}} = 5$$

$$\Rightarrow \frac{\frac{\sin x + \cos x}{\cos x}}{\frac{\cos x + \sin x}{\cos x}} = 5$$

$$\Rightarrow \frac{\frac{\sin x + \cos x}{\cos x}}{\frac{\cos x}{\sin x}} \times \frac{\cos x}{\cos x + \sin x} = 5$$

$$\Rightarrow \frac{\cos x}{\sin x} = 5$$

$$\Rightarrow \cot x = 5$$

$$\Rightarrow \tan x = \frac{1}{5}$$

Calculator solution is 11.3° (1 d.p.)

 $\tan x$ is positive, so x is in

1st and 3rd quadrants

Solutions are 11.3°, 191.3° (1 d.p.)