Differentiation, Mixed Exercise 9

1 **a** $y = \ln x^2 = 2 \ln x$

(using properties of logs)

$$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = 2 \times \frac{1}{x} = \frac{2}{x}$$

Alternative method:

When
$$y = \ln f(x)$$
, $\frac{dy}{dx} = \frac{f'(x)}{f(x)}$

(by the chain rule)

$$\therefore y = \ln x^2 \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x}{x^2} = \frac{2}{x}$$

b $v = x^2 \sin 3x$

Using the product rule,

$$\frac{dy}{dx} = x^2 (3\cos 3x) + (\sin 3x) \times 2x$$
$$= 3x^2 \cos 3x + 2x \sin 3x$$

2 a $2y = x - \sin x \cos x$

$$\therefore y = \frac{x}{2} - \frac{1}{2}\sin x \cos x$$

Using the product rule,

$$\frac{dy}{dx} = \frac{1}{2} - \frac{1}{2} \left(\sin x (-\sin x) + \cos x \cos x \right)$$

$$= \frac{1}{2} + \frac{1}{2} \sin^2 x - \frac{1}{2} \cos^2 x$$

$$= \frac{1}{2} (1 - \cos^2 x) + \frac{1}{2} \sin^2 x$$

$$= \frac{1}{2} \sin^2 x + \frac{1}{2} \sin^2 x$$

$$= \sin^2 x$$

- **b** $y = \frac{x}{2} \frac{1}{2} \sin x \cos x$
 - $\frac{\mathrm{d}y}{\mathrm{d}x} = \sin^2 x$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2\sin x \cos x = \sin 2x$$

At points of inflection $\frac{d^2y}{dx^2} = 0$

- i.e. $\sin 2x = 0$
- $2x = \pi$, 2π or 3π
- $x = \frac{\pi}{2}$, π or $\frac{3\pi}{2}$
- When $x = \frac{\pi}{2}$, $y = \frac{\pi}{4}$
- At $x = \frac{\pi}{3}$, $\frac{d^2y}{dx^2} > 0$; at $x = \frac{3\pi}{4}$, $\frac{d^2y}{dx^2} < 0$
- So $\frac{d^2y}{dx^2}$ changes sign either side of $x = \frac{\pi}{2}$
- When $x = \pi$, $y = \frac{\pi}{2}$
- At $x = \frac{3\pi}{4}$, $\frac{d^2y}{dx^2} < 0$; at $x = \frac{5\pi}{4}$, $\frac{d^2y}{dx^2} > 0$
- So $\frac{d^2y}{dx^2}$ changes sign either side of $x = \pi$
- When $x = \frac{3\pi}{2}$, $y = \frac{3\pi}{4}$
- At $x = \frac{5\pi}{4}$, $\frac{d^2y}{dx^2} > 0$; at $x = \frac{7\pi}{4}$, $\frac{d^2y}{dx^2} < 0$
- So $\frac{d^2y}{dx^2}$ changes sign either side of $x = \frac{3\pi}{2}$

Hence the points of inflection are

$$\left(\frac{\pi}{2}, \frac{\pi}{4}\right), \left(\pi, \frac{\pi}{2}\right) \text{ and } \left(\frac{3\pi}{2}, \frac{3\pi}{4}\right)$$

3 a
$$y = \frac{\sin x}{x}$$

Using the quotient rule:

$$\frac{dy}{dx} = \frac{x \cos x - \sin x \times 1}{x^2}$$
$$= \frac{x \cos x - \sin x}{x^2}$$

b
$$y = \ln \frac{1}{x^2 + 9} = \ln 1 - \ln (x^2 + 9)$$

= $-\ln (x^2 + 9)$

(by the laws of logarithms)

Using the chain rule:

$$\frac{dy}{dx} = -\frac{1}{x^2 + 9} \times 2x = -\frac{2x}{x^2 + 9}$$

4 a
$$f(x) = \frac{x}{x^2 + 2}$$

$$f'(x) = \frac{(x^2 + 2) \times 1 - x \times 2x}{(x^2 + 2)^2} = \frac{2 - x^2}{(x^2 + 2)^2}$$

The function is increasing when $f'(x) \ge 0$

i.e.
$$\frac{2 - x^2}{(x^2 + 2)^2} \ge 0$$
$$x^2 \le 2$$
$$-\sqrt{2} \le x \le \sqrt{2}$$

Hence f(x) is increasing on the interval [-k, k] where $k = \sqrt{2}$.

$$\mathbf{b} \quad \mathbf{f''}(x) = \frac{-2x(x^2+2)^2 - 4x(x^2+2)(2-x^2)}{(x^2+2)^4}$$
$$= \frac{2x(x^2+2)\left(-(x^2+2) - 2(2-x^2)\right)}{(x^2+2)^4}$$
$$= \frac{2x(x^2+2)(x^2-6)}{(x^2+2)^4}$$

f''(x) changes sign when the numerator $2x(x^2+2)(x^2-6)$ is zero

i.e. at
$$x = 0$$
 and $x = \pm \sqrt{6}$

where
$$y = 0$$
 and $y = \frac{\pm \sqrt{6}}{6+2}$

Points of inflection are

$$(0,0)$$
 and $\left(\pm\sqrt{6},\pm\frac{\sqrt{6}}{8}\right)$

5 a
$$f(x) = 12\ln x + x^{\frac{3}{2}}, \quad x > 0$$

$$\mathbf{f'}(x) = \frac{12}{x} + \frac{3}{2}x^{\frac{1}{2}} = \frac{12}{x} + \frac{3}{2}\sqrt{x}$$

f(x) is an increasing function when $f'(x) \ge 0$

As
$$x > 0$$
, $\frac{12}{x} + \frac{3}{2}\sqrt{x}$ is always positive.

 \therefore f(x) is increasing for all x > 0.

b
$$f''(x) = -\frac{12}{x^2} + \frac{3}{4}x^{-\frac{1}{2}} = -\frac{12}{x^2} + \frac{3}{4\sqrt{x}}$$

At a point of inflection f''(x) = 0

$$-\frac{12}{x^2} + \frac{3}{4\sqrt{x}} = 0$$

$$\frac{12}{x^2} = \frac{3}{4\sqrt{x}}$$

$$x^2 = 16\sqrt{x}$$

$$x^{\frac{3}{2}} = 16$$

$$x = \sqrt[3]{256}$$

$$f(\sqrt[3]{256}) = 12 \ln (256)^{\frac{1}{3}} + 256^{\frac{1}{2}}$$

$$= 4 \ln 256 + 16$$

$$= 4 \ln 2^{8} + 16 = 32 \ln 2^{8}$$

 $= 4 \ln 2^8 + 16 = 32 \ln 2 + 16$

Coordinates of the point of inflection are $(\sqrt[3]{256}, 32 \ln 2 + 16)$

$$6 \quad v = \cos^2 x + \sin x$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -2\cos x \sin x + \cos x$$
$$= \cos x (1 - 2\sin x)$$

At stationary points
$$\frac{dy}{dx} = 0$$

$$\cos x (1 - 2\sin x) = 0$$

$$\cos x = 0 \text{ or } \sin x = \frac{1}{2}$$

Solutions in the interval $(0, 2\pi]$ are

$$x = \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}$$
 and $\frac{3\pi}{2}$

$$x = \frac{\pi}{6} \Rightarrow y = \frac{3}{4} + \frac{1}{2} = \frac{5}{4}$$

$$x = \frac{\pi}{2} \Rightarrow y = 1$$

$$x = \frac{5\pi}{6} \Rightarrow y = \frac{3}{4} + \frac{1}{2} = \frac{5}{4}$$

$$x = \frac{3\pi}{2} \Rightarrow y = -1$$

So the stationary points are

$$\left(\frac{\pi}{6}, \frac{5}{4}\right), \left(\frac{\pi}{2}, 1\right), \left(\frac{5\pi}{6}, \frac{5}{4}\right) \text{ and } \left(\frac{3\pi}{2}, -1\right)$$

$$7 \quad y = x\sqrt{\sin x} = x(\sin x)^{\frac{1}{2}}$$

$$\frac{dy}{dx} = x \times \frac{1}{2} (\sin x)^{-\frac{1}{2}} \cos x + (\sin x)^{\frac{1}{2}} \times 1$$
$$= \frac{1}{2} (\sin x)^{-\frac{1}{2}} (x \cos x + 2 \sin x)$$

At the maximum point $\frac{dy}{dx} = 0$

$$\frac{1}{2}(\sin x)^{-\frac{1}{2}}(x\cos x + 2\sin x) = 0$$

$$\therefore x \cos x + 2 \sin x = 0$$

$$(as (\sin x)^{-\frac{1}{2}} = \frac{1}{\sqrt{\sin x}} \neq 0)$$

Dividing through by $\cos x$ gives

$$x + 2 \tan x = 0$$

So the *x*-coordinate of the maximum point satisfies $2 \tan x + x = 0$.

8 a
$$f(x) = e^{0.5x} - x^2$$

$$f'(x) = 0.5e^{0.5x} - 2x$$

b
$$f'(6) = -1.957... < 0$$

$$f'(7) = 2.557... > 0$$

As the sign changes between x = 6 and x = 7 and f'(x) is continuous, f'(x) = 0 has a root p between 6 and 7.

Therefore y = f(x) has a stationary point at x = p where 6 .

9 a
$$f(x) = e^{2x} \sin 2x$$

$$f'(x) = e^{2x} (2\cos 2x) + \sin 2x (2e^{2x})$$
$$= 2e^{2x} (\cos 2x + \sin 2x)$$

At turning points f'(x) = 0

$$2e^{2x}(\cos 2x + \sin 2x) = 0$$

$$\cos 2x + \sin 2x = 0$$

$$\sin 2x = -\cos 2x$$

Divide both sides by $\cos 2x$:

$$\tan 2x = -1$$

$$2x = \frac{3\pi}{4} \text{ or } \frac{7\pi}{4}$$

$$\therefore x = \frac{3\pi}{8} \text{ or } \frac{7\pi}{8} \text{ (in the interval } 0 < x < \pi)$$

When
$$x = \frac{3\pi}{8}$$
, $y = \frac{1}{\sqrt{2}}e^{\frac{3\pi}{4}}$

When
$$x = \frac{7\pi}{8}$$
, $y = -\frac{1}{\sqrt{2}}e^{\frac{7\pi}{4}}$

So the coordinates of the turning points

are
$$\left(\frac{3\pi}{8}, \frac{1}{\sqrt{2}}e^{\frac{3\pi}{4}}\right)$$
 and $\left(\frac{7\pi}{8}, -\frac{1}{\sqrt{2}}e^{\frac{7\pi}{4}}\right)$.

9 **b**
$$f'(x) = 2e^{2x}(\cos 2x + \sin 2x)$$

$$f''(x) = 2e^{2x}(-2\sin 2x + 2\cos 2x)$$
$$+ 4e^{2x}(\cos 2x + \sin 2x)$$
$$= e^{2x}(-4\sin 2x + 4\cos 2x + 4\cos 2x)$$
$$+ 4\cos 2x + 4\sin 2x)$$
$$= 8e^{2x}\cos 2x$$

$$\mathbf{c} \quad \mathbf{f''} \left(\frac{3\pi}{8}\right) = 8e^{\frac{3\pi}{4}} \cos \frac{3\pi}{4}$$
$$= 8e^{\frac{3\pi}{4}} \left(-\frac{\sqrt{2}}{2}\right) = -4\sqrt{2} e^{\frac{3\pi}{4}} < 0$$

$$\therefore \left(\frac{3\pi}{8}, \frac{1}{\sqrt{2}}e^{\frac{3\pi}{4}}\right) \text{ is a maximum.}$$

$$f''\left(\frac{7\pi}{8}\right) = 8e^{\frac{7\pi}{4}}\cos\frac{7\pi}{4}$$
$$= 8e^{\frac{7\pi}{4}}\left(\frac{\sqrt{2}}{2}\right) = 4\sqrt{2}e^{\frac{7\pi}{4}} > 0$$

$$\therefore \left(\frac{7\pi}{8}, -\frac{1}{\sqrt{2}}e^{\frac{7\pi}{4}}\right) \text{ is a minimum.}$$

d At points of inflection
$$f''(x) = 0$$

$$8e^{2x}\cos 2x = 0$$

$$\cos 2x = 0$$

$$2x = \frac{\pi}{2} \text{ or } \frac{3\pi}{2}$$

$$\therefore x = \frac{\pi}{4} \text{ or } \frac{3\pi}{4}$$

When
$$x = \frac{\pi}{4}$$
, $y = e^{\frac{\pi}{2}} \sin \frac{\pi}{2} = e^{\frac{\pi}{2}}$

When
$$x = \frac{3\pi}{4}$$
, $y = e^{\frac{3\pi}{2}} \sin \frac{3\pi}{2} = -e^{\frac{3\pi}{2}}$

Points of inflection are

$$\left(\frac{\pi}{4}, e^{\frac{\pi}{2}}\right)$$
 and $\left(\frac{3\pi}{4}, -e^{\frac{3\pi}{2}}\right)$.

10
$$y = 2e^x + 3x^2 + 2$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\mathrm{e}^x + 6x$$

When
$$x = 0$$
, $y = 4$ and $\frac{dy}{dx} = 2$

Equation of normal at (0, 4) is

$$y-4=-\frac{1}{2}(x-0)$$

$$2y - 8 = -x$$

or
$$x + 2y - 8 = 0$$

11 a
$$f(x) = 3 \ln x + \frac{1}{x}$$

$$f'(x) = \frac{3}{x} - \frac{1}{x^2}$$

At a stationary point $\frac{dy}{dx} = 0$

$$\frac{3}{x} - \frac{1}{x^2} = 0$$

$$3x - 1 = 0$$

$$x = \frac{1}{3}$$

So the *x*-coordinate of the stationary

point *P* is
$$\frac{1}{3}$$

b At the point Q, x = 1 so y = f(1) = 1

The gradient of the curve at point Q is f'(1) = 3 - 1 = 2

So the gradient of the normal to the curve

at Q is $-\frac{1}{2}$

Equation of the normal at Q is

$$y-1=-\frac{1}{2}(x-1)$$

i.e.
$$y = -\frac{1}{2}x + \frac{3}{2}$$

12 a Let
$$f(x) = e^{2x} \cos x$$

Then
$$f'(x) = e^{2x}(-\sin x) + \cos x(2e^{2x})$$

= $e^{2x}(2\cos x - \sin x)$

Turning points occur when f'(x) = 0

$$e^{2x}(2\cos x - \sin x) = 0$$

$$\sin x = 2\cos x$$

Dividing both sides by $\cos x$ gives

$$\tan x = 2$$

b When
$$x = 0$$
, $y = f(0) = e^0 \cos 0 = 1$

The gradient of the curve at
$$(0, 1)$$
 is $f'(0) = e^{0}(2-0) = 2$

This is also the gradient of the tangent at (0, 1).

So the equation of the tangent at (0, 1) is

$$y-1=2(x-0)$$

$$y = 2x + 1$$

13 a
$$x = y^2 \ln y$$

Using the product rule:

$$\frac{\mathrm{d}x}{\mathrm{d}y} = y^2 \left(\frac{1}{y}\right) + \ln y \times 2y = y + 2y \ln y$$

$$\mathbf{b} \quad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\frac{\mathrm{d}x}{\mathrm{d}y}} = \frac{1}{y + 2y \ln y}$$

When
$$y = e$$
,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\mathrm{e} + 2\mathrm{e}\ln\mathrm{e}} = \frac{1}{3\mathrm{e}}$$

14 a
$$f(x) = (x^3 - 2x)e^{-x}$$

 $f'(x) = (x^3 - 2x)(-e^{-x}) + (3x^2 - 2)e^{-x}$
 $= e^{-x}(-x^3 + 3x^2 + 2x - 2)$

b When
$$x = 0$$
, $f'(x) = -2$

Gradient of normal is $\frac{1}{2}$

: equation of normal to the curve at the origin is

$$y = \frac{1}{2}x$$

This line will intersect the curve again when

$$\frac{1}{2}x = (x^3 - 2x)e^{-x}$$
$$1 = 2(x^2 - 2)e^{-x}$$

$$e^x = 2x^2 - 4$$

$$2x^2 = e^x + 4$$

15 a
$$f(x) = x(1+x) \ln x = (x+x^2) \ln x$$

 $f'(x) = (x+x^2) \times \frac{1}{x} + \ln x \times (1+2x)$
 $= 1+x+(1+2x) \ln x$

b At minimum point
$$A$$
, $f'(x) = 0$

$$1 + x + (1 + 2x) \ln x = 0$$

$$(1+2x) \ln x = -(1+x)$$

$$\ln x = -\frac{1+x}{1+2x}$$

So x-coordinate of A is the solution to

the equation $x = e^{-\frac{1+x}{1+2x}}$

16 a
$$x = 4t - 3$$
, $y = \frac{8}{t^2} = 8t^{-2}$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 4, \ \frac{\mathrm{d}y}{\mathrm{d}t} = -16t^{-3}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{-16t^{-3}}{4} = \frac{-4}{t^3}$$

16 b When t = 2, the curve has gradient

$$\frac{dy}{dx} = \frac{-4}{2^3} = -\frac{1}{2}$$

:. the normal has gradient 2.

Also, when t = 2, x = 5 and y = 2, so the point A has coordinates (5, 2).

 \therefore the equation of the normal at A is

$$y-2=2(x-5)$$

i.e.
$$y = 2x - 8$$

17 x = 2t, $y = t^2$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 2, \ \frac{\mathrm{d}y}{\mathrm{d}t} = 2t$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{2t}{2} = t$$

At the point *P* where t = 3, the gradient of the curve is $\frac{dy}{dx} = 3$

 \therefore gradient of the normal is $-\frac{1}{3}$

Also, when t = 3, the coordinates are (6, 9).

 \therefore the equation of the normal at P is

$$y-9=-\frac{1}{3}(x-6)$$

i.e.
$$3y + x = 33$$

18
$$x = t^3$$
, $y = t^2$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 3t^2, \ \frac{\mathrm{d}y}{\mathrm{d}t} = 2t$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{2t}{3t^2} = \frac{2}{3t}$$

At the point (1, 1) the value of t is 1.

 \therefore the gradient of the curve is $\frac{2}{3}$, which is also the gradient of the tangent.

:. the equation of the tangent is

$$y-1=\frac{2}{3}(x-1)$$

i.e.
$$y = \frac{2}{3}x + \frac{1}{3}$$

19 a
$$x = 2\cos t + \sin 2t$$
, $y = \cos t - 2\sin 2t$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -2\sin t + 2\cos 2t$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = -\sin t - 4\cos 2t$$

$$\mathbf{b} \quad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{-\sin t - 4\cos 2t}{-2\sin t + 2\cos 2t}$$

When
$$t = \frac{\pi}{4}$$
, $\frac{dy}{dx} = \frac{-\frac{1}{\sqrt{2}} - 0}{-\frac{2}{\sqrt{2}} + 0} = \frac{1}{2}$

19 c The gradient of the normal at the point P where $t = \frac{\pi}{4}$ is -2.

The coordinates of P are found by substituting $t = \frac{\pi}{4}$ into the parametric equations:

$$x = \frac{2}{\sqrt{2}} + 1$$
, $y = \frac{1}{\sqrt{2}} - 2$

 \therefore the equation of the normal at P is

$$y - \left(\frac{1}{\sqrt{2}} - 2\right) = -2\left(x - \left(\frac{2}{\sqrt{2}} + 1\right)\right)$$

$$y - \frac{1}{\sqrt{2}} + 2 = -2x + 2\sqrt{2} + 2$$

i.e.
$$y + 2x = \frac{5\sqrt{2}}{2}$$

20 a x = 2t + 3, $y = t^3 - 4t$

At point A, where t = -1, x = 1 and y = 3.

 \therefore the coordinates of A are (1, 3).

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 2, \ \frac{\mathrm{d}y}{\mathrm{d}t} = 3t^2 - 4$$

$$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3t^2 - 4}{2}$$

At the point A, $\frac{dy}{dx} = -\frac{1}{2}$

 \therefore gradient of the tangent at A is $-\frac{1}{2}$

Equation of the tangent at A is

$$y-3=-\frac{1}{2}(x-1)$$

$$2y - 6 = -x + 1$$

i.e.
$$2y + x = 7$$

b The tangent line *l* meets the curve *C* at points *A* and *B*.

Substitute x = 2t + 3 and $y = t^3 - 4t$ into the equation of l:

$$2(t^3 - 4t) + (2t + 3) = 7$$

$$2t^3 - 6t = 4$$

$$t^3 - 3t - 2 = 0$$

At point A, t = -1, so t = -1 is a root of this equation, and hence (t + 1) is a factor of the left-hand side expression.

$$t^{3}-3t-2 = (t+1)(t^{2}-t-2)$$
$$= (t+1)(t+1)(t-2)$$
$$= 2(t+1)^{2}(t-2)$$

So line l meets the curve C at t = -1 (repeated root because the line is tangent to the curve there) and at t = 2.

Therefore, at point B, t = 2.

21 The rate of change of V is $\frac{dV}{dt}$

$$\therefore \frac{\mathrm{d}V}{\mathrm{d}t} \propto V$$

i.e.
$$\frac{\mathrm{d}V}{\mathrm{d}t} = -kV$$

where k is a positive constant. (The negative sign is needed as the value of the car is *decreasing*.)

22 The rate of change of mass is $\frac{dM}{dt}$

$$\therefore \frac{\mathrm{d}M}{\mathrm{d}t} \propto M$$

i.e.
$$\frac{dM}{dt} = -kM$$

where k is a positive constant. (The negative sign represents *loss* of mass.)

23 The rate of change of pondweed is $\frac{dP}{dt}$

The growth rate is proportional to *P*:

growth rate $\propto P$

i.e. growth rate = kP where k is a positive constant.

But pondweed is also being removed at a constant rate Q.

$$\therefore \frac{dP}{dt} = \text{growth rate} - \text{removal rate}$$

$$\frac{dP}{dt} = kP - Q$$

24 The rate of increase of the radius is $\frac{dr}{dt}$

 $\therefore \frac{dr}{dt} \propto \frac{1}{r}$, as the rate is *inversely* proportional to the radius.

Hence
$$\frac{dr}{dt} = \frac{k}{r}$$

where k is the constant of proportion.

25 The rate of change of temperature is $\frac{d\theta}{dt}$

$$\therefore \frac{\mathrm{d}\theta}{\mathrm{d}t} \propto (\theta - \theta_0)$$

i.e.
$$\frac{\mathrm{d}\theta}{\mathrm{d}t} = -k(\theta - \theta_0)$$
,

where *k* is a positive constant. (The negative sign indicates that the temperature is decreasing, i.e. *loss* of temperature.)

26 a
$$x = 4\cos 2t, y = 3\sin t$$

The point $A\left(2,\frac{3}{2}\right)$ is on the curve, so

$$4\cos 2t = 2 \text{ and } 3\sin t = \frac{3}{2}$$

$$\cos 2t = \frac{1}{2} \text{ and } \sin t = \frac{1}{2}$$

The only value of t in the interval $-\frac{\pi}{2} < t < \frac{\pi}{2}$ that satisfies both equations

is
$$\frac{\pi}{6}$$
. Therefore $t = \frac{\pi}{6}$ at the point A.

$$\mathbf{b} \quad \frac{\mathrm{d}x}{\mathrm{d}t} = -8\sin 2t, \quad \frac{\mathrm{d}y}{\mathrm{d}t} = 3\cos t$$

$$\therefore \frac{dy}{dx} = \frac{3\cos t}{-8\sin 2t}$$

$$= -\frac{3\cos t}{16\sin t \cos t}$$
(using a double angle formula)
$$= -\frac{3}{16\sin t}$$

$$= -\frac{3}{16} \csc t$$

c At point A, where
$$t = \frac{\pi}{6}$$
, $\frac{dy}{dx} = -\frac{3}{8}$

 \therefore gradient of the normal at A is $\frac{8}{3}$

Equation of the normal is

$$y - \frac{3}{2} = \frac{8}{3}(x - 2)$$

Multiply through by 6 and rearrange to give:

$$6y - 9 = 16x - 32$$

$$6y - 16x + 23 = 0$$

26 d To find where the normal cuts the curve, substitute $x = 4\cos 2t$ and $y = 3\sin t$ into the equation of the normal:

$$6(3\sin t) - 16(4\cos 2t) + 23 = 0$$

$$18\sin t - 64\cos 2t + 23 = 0$$

$$18\sin t - 64(1 - 2\sin^2 t) + 23 = 0$$

(using a double angle formula)

$$128\sin^2 t + 18\sin t - 41 = 0$$

But $\sin t = \frac{1}{2}$ is one solution of this

equation, as point A lies on the line and on the curve. So

$$128\sin^2 t + 18\sin t - 41$$

$$= (2\sin t - 1)(64\sin t + 41)$$

$$(2\sin t - 1)(64\sin t + 41) = 0$$

Therefore, at point *B*, $\sin t = -\frac{41}{64}$

 \therefore the y-coordinate of point B is

$$3 \times \left(-\frac{41}{64}\right) = -\frac{123}{64}$$

27 a $x = a \sin^2 t, \ y = a \cos t$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 2a\sin t\cos t, \ \frac{\mathrm{d}y}{\mathrm{d}t} = -a\sin t$$

$$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-a\sin t}{2a\sin t\cos t} = \frac{-1}{2\cos t} = -\frac{1}{2}\sec t$$

$$a\sin^2 t = \frac{3}{4}a$$
 and $a\cos t = \frac{1}{2}a$

$$\sin t = \pm \frac{\sqrt{3}}{2} \text{ and } \cos t = \frac{1}{2}$$

The only value of *t* in the interval

 $0 \le t \le \frac{\pi}{2}$ that satisfies both equations

is
$$\frac{\pi}{3}$$
. Therefore $t = \frac{\pi}{3}$ at the point *P*.

Gradient of the curve at point P is

$$-\frac{1}{2}\sec\frac{\pi}{3}=-1.$$

 \therefore equation of the tangent at P is

$$y - \frac{1}{2}a = -1\left(x - \frac{3}{4}a\right)$$

$$y - \frac{1}{2}a = -x + \frac{3}{4}a$$

Multiply equation by 4 and rearrange to give

$$4y + 4x = 5a$$

c Equation of the tangent at C is 4y+4x=5a

At
$$A$$
, $x = 0 \Rightarrow y = \frac{5a}{4}$

At B,
$$y = 0 \Rightarrow x = \frac{5a}{4}$$

Area of
$$AOB = \frac{1}{2} \left(\frac{5a}{4} \right)^2 = \frac{25}{32} a^2$$
,

which is of the form ka^2 with $k = \frac{25}{32}$

28
$$x = (t+1)^2$$
, $y = \frac{1}{2}t^3 + 3$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 2(t+1), \quad \frac{\mathrm{d}y}{\mathrm{d}t} = \frac{3}{2}t^2$$

$$\therefore \frac{dy}{dx} = \frac{\frac{3}{2}t^2}{2(t+1)} = \frac{3t^2}{4(t+1)}$$

When
$$t = 2$$
, $\frac{dy}{dx} = \frac{3 \times 4}{4 \times 3} = 1$

 \therefore gradient of the normal at the point P, where t = 2, is -1.

The coordinates of P are (9, 7).

: equation of the normal is

$$y-7 = -1(x-9)$$

$$v - 7 = -x + 9$$

i.e.
$$y + x = 16$$

29
$$5x^2 + 5y^2 - 6xy = 13$$

Differentiate with respect to *x*:

$$10x + 10y \frac{dy}{dx} - 6\left(x \frac{dy}{dx} + y\right) = 0$$

$$(10y - 6x)\frac{\mathrm{d}y}{\mathrm{d}x} = 6y - 10x$$

$$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{6y - 10x}{10y - 6x}$$

At the point (1, 2)

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{12 - 10}{20 - 6} = \frac{2}{14} = \frac{1}{7}$$

So the gradient of the curve at (1, 2) is $\frac{1}{7}$

$$30 e^{2x} + e^{2y} = xy$$

Differentiate with respect to *x*:

$$2e^{2x} + 2e^{2y}\frac{dy}{dx} = x\frac{dy}{dx} + y \times 1$$

$$2e^{2y}\frac{dy}{dx} - x\frac{dy}{dx} = y - 2e^{2x}$$

$$(2e^{2y} - x)\frac{dy}{dx} = y - 2e^{2x}$$

$$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y - 2\mathrm{e}^{2x}}{2\mathrm{e}^{2y} - x}$$

$$31 y^3 + 3xy^2 - x^3 = 3$$

Differentiate with respect to *x*:

$$3y^2 \frac{\mathrm{d}y}{\mathrm{d}x} + \left(3x \times 2y \frac{\mathrm{d}y}{\mathrm{d}x} + y^2 \times 3\right) - 3x^2 = 0$$

$$(3y^2 + 6xy)\frac{dy}{dx} = 3x^2 - 3y^2$$

$$\therefore \frac{dy}{dx} = \frac{3(x^2 - y^2)}{3y(y + 2x)} = \frac{x^2 - y^2}{y(y + 2x)}$$

Turning points occur when $\frac{dy}{dx} = 0$

$$\frac{x^2 - y^2}{y(y+2x)} = 0$$

$$x^2 = y^2$$

$$x = \pm y$$

When
$$x = y$$
, $y^3 + 3y^3 - y^3 = 3$

so
$$3y^3 = 3$$

$$y = 1$$
 and hence $x = 1$

When
$$x = -y$$
, $y^3 - 3y^3 + y^3 = 3$

so
$$-y^{3} = 3$$

$$y = \sqrt[3]{-3}$$
 and hence $x = -\sqrt[3]{-3}$

... the coordinates of the turning points are (1, 1) and $(-\sqrt[3]{-3}, \sqrt[3]{-3})$.

32 a
$$(1+x)(2+y) = x^2 + y^2$$

Differentiate with respect to *x*:

$$(1+x)\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) + (2+y)(1) = 2x + 2y\frac{\mathrm{d}y}{\mathrm{d}x}$$

$$(1+x-2y)\frac{dy}{dx} = 2x - y - 2$$

$$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x - y - 2}{1 + x - 2y}$$

b When the curve meets the y-axis, x = 0.

Substitute x = 0 into the equation of the curve:

$$2 + y = y^2$$

i.e.
$$y^2 - y - 2 = 0$$

$$(y-2)(y+1)=0$$

$$y = 2$$
 or $y = -1$

At
$$(0, 2)$$
, $\frac{dy}{dx} = \frac{0 - 2 - 2}{1 + 0 - 4} = \frac{4}{3}$

At
$$(0, -1)$$
, $\frac{dy}{dx} = \frac{0+1-2}{1+0+2} = -\frac{1}{3}$

c A tangent that is parallel to the *y*-axis has infinite gradient.

For
$$\frac{dy}{dx} = \frac{2x - y - 2}{1 + x - 2y}$$
 to be infinite,
the denominator $1 + x - 2y = 0$,
i.e. $x = 2y - 1$

Substitute x = 2y - 1 into the equation of the curve:

$$(1+2y-1)(2+y) = (2y-1)^2 + y^2$$

$$2y^2 + 4y = 4y^2 - 4y + 1 + y^2$$

$$3y^2 - 8y + 1 = 0$$

$$y = \frac{8 \pm \sqrt{64 - 12}}{6} = \frac{4 \pm \sqrt{13}}{3}$$

When
$$y - \frac{4 + \sqrt{13}}{3}$$
, $x = \frac{5 + 2\sqrt{13}}{3}$

When
$$y = \frac{4 - \sqrt{13}}{3}$$
, $x = \frac{5 - 2\sqrt{13}}{3}$

:. there are two points at which the tangents are parallel to the y-axis.

They are
$$\left(\frac{5+2\sqrt{13}}{3}, \frac{4+\sqrt{13}}{3}\right)$$
 and $\left(\frac{5-2\sqrt{13}}{3}, \frac{4-\sqrt{13}}{3}\right)$.

33
$$7x^2 + 48xy - 7y^2 + 75 = 0$$

Implicit differentiation with respect to *x* gives

$$14x + 48\left(x\frac{dy}{dx} + y\right) - 14y\frac{dy}{dx} = 0$$

$$(48x-14y)\frac{dy}{dx} = -14x-48y$$

$$\therefore \frac{dy}{dx} = \frac{-14x - 48y}{48x - 14y} = \frac{7x + 24y}{7y - 24x}$$

When
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{11}$$
,

$$\frac{7x + 24y}{7y - 24x} = \frac{2}{11}$$

$$14y - 48x = 77x + 264y$$

$$125x + 250y = 0$$

$$\therefore x + 2y = 0$$

So the coordinates of the points at which the gradient is $\frac{2}{11}$ satisfy x + 2y = 0,

which means that the points lie on the line x + 2y = 0.

34
$$y = x^x$$

Take natural logs of both sides:

$$\ln y = \ln x^x$$

ln y = x ln x (using properties of logarithms)

Differentiate with respect to *x*:

$$\frac{1}{y}\frac{dy}{dx} = x \times \frac{1}{x} + \ln x \times 1$$
$$= 1 + \ln x$$

$$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = y(1 + \ln x)$$

But
$$y = x^x$$

$$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = x^x (1 + \ln x)$$

35 a
$$a^x = e^{kx}$$

Take natural logs of both sides:

$$\ln a^x = \ln e^{kx}$$

$$x \ln a = kx$$

As this is true for all values of x, $k = \ln a$.

b Taking
$$a = 2$$
,

$$y = 2^x = e^{kx}$$
 where $k = \ln 2$

$$\frac{dy}{dx} = ke^{kx} = (\ln 2)e^{(\ln 2)x} = 2^x \ln 2$$

c At the point (2, 4), x = 2.

 \therefore gradient of the curve at (2, 4) is

$$\frac{dy}{dx} = 2^2 \ln 2 = 4 \ln 2 = \ln 2^4 = \ln 16$$

36 a
$$P = P_0(1.09)^t$$

Take natural logs of both sides:

$$\ln P = \ln \left(P_0 (1.09)^t \right)$$

$$= \ln P_0 + \ln (1.09)^t$$

$$= \ln P_0 + t \ln 1.09$$

$$\therefore t \ln 1.09 = \ln P - \ln P_0$$

$$t = \frac{\ln P - \ln P_0}{\ln 1.09} \quad \text{or} \quad \frac{\ln \left(\frac{P}{P_0}\right)}{\ln 1.09}$$

b When
$$t = T$$
, $P = 2P_0$.

Substituting these into the expression in part **a** gives

$$T = \frac{\ln 2}{\ln 1.09} = 8.04 \text{ (3 s.f.)}$$

36 c
$$\frac{\mathrm{d}P}{\mathrm{d}t} = P_0 (1.09)^t (\ln 1.09)$$

When
$$t = T$$
, $P = 2P_0$ so $(1.09)^T = 2$

Hence
$$\frac{dP}{dt} = P_0 (1.09)^T (\ln 1.09)$$

= $P_0 \times 2 \times \ln 1.09$
= $0.172 P_0 (3 \text{ s.f.})$

$$37 \mathbf{a} \quad y = \ln(\sin x)$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \cos x \times \frac{1}{\sin x} = \cot x$$

At a stationary point
$$\frac{dy}{dx} = 0$$

$$\cot x = 0 \implies x = \frac{\pi}{2}$$

(in the interval $0 < x < \pi$)

When
$$x = \frac{\pi}{2}$$
, $y = \ln(\sin \frac{\pi}{2}) = \ln 1 = 0$

$$\therefore$$
 stationary point is at $\left(\frac{\pi}{2}, 0\right)$.

$$\mathbf{b} \quad \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -\csc^2 x$$

$$\csc^2 x = \frac{1}{\sin^2 x} > 0 \text{ for all } 0 < x < \pi$$

$$\therefore \frac{d^2 y}{dx^2} < 0 \text{ for all } 0 < x < \pi$$

Hence the curve C is concave for all values of x in its domain.

38 a
$$m = 40 e^{-0.244t}$$

After 9 months, $t = 0.75$, so $m = 40 e^{-0.244 \times 0.75} = 40 e^{-0.183} = 33.31...$

b
$$\frac{\mathrm{d}m}{\mathrm{d}t} = -0.244 \times 40 \,\mathrm{e}^{-0.244t} = -9.76 \,\mathrm{e}^{-0.244t}$$

c The negative sign indicates that the mass is decreasing.

39 a
$$f(x) = \frac{\cos 2x}{e^x}$$

$$f'(x) = \frac{-2e^x \sin 2x - e^x \cos 2x}{e^{2x}}$$

$$= -\frac{2\sin 2x + \cos 2x}{e^x}$$
At A and B , $f'(x) = 0$

$$2\sin 2x + \cos 2x = 0$$

$$2\tan 2x + 1 = 0$$

$$\tan 2x = -0.5$$

$$2x = 2.678 \text{ or } 5.820$$

$$x = 1.339 \text{ or } 2.910$$
(in the interval $0 \le x \le \pi$)
$$x = 1.339 \Rightarrow y = f(x) = -0.2344$$

$$x = 2.910 \Rightarrow y = f(x) = 0.04874$$
Therefore, to 3 significant figures: coordinates of A are $(1.34, -0.234)$; coordinates of B are $(2.91, 0.0487)$.

b The curve of y = 2 + 4f(x - 4) is a transformation of f(x), obtained via a translation of 4 units to the right, a stretch by a factor of 4 in the y-direction, and then a translation of 2 units upwards.

Turning points are: minimum $(1.34+4, -0.234\times4+2)$ and maximum $(2.91+4, 0.0487\times4+2)$, i.e. minimum (5.34, 1.06) and maximum (6.91, 2.19).

$$\mathbf{c}$$
 $\mathbf{f''}(x)$

$$= -\frac{e^{x}(4\cos 2x - 2\sin 2x) - e^{x}(2\sin 2x + \cos 2x)}{e^{2x}}$$

$$=\frac{4\sin 2x - 3\cos 2x}{e^x}$$

f(x) is concave when $f''(x) \le 0$

$$f''(x) = 0$$
 when

$$4\sin 2x - 3\cos 2x = 0$$

$$\tan 2x = \frac{3}{4}$$

$$2x = 0.644$$
 or 3.785

$$x = 0.322$$
 or 1.893

The curve has a minimum point and hence is convex between these values, so it is concave for

$$0 \le x \le 0.322$$
 and $1.892 \le x \le \pi$.

Challenge

$$\mathbf{a} \quad y = 2\sin 2t, \ x = 5\cos\left(t + \frac{\pi}{12}\right)$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = 4\cos 2t, \ \frac{\mathrm{d}x}{\mathrm{d}t} = -5\sin\left(t + \frac{\pi}{12}\right)$$

$$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{4\cos 2t}{5\sin\left(t + \frac{\pi}{12}\right)}$$

b
$$\frac{dy}{dx} = 0$$
 when $4\cos 2t = 0$
 $2t = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}$ or $\frac{7\pi}{2}$
 $t = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}$ or $\frac{7\pi}{4}$
(in the interval $0 \le x \le 2\pi$)
 $t = \frac{\pi}{4} \Rightarrow x = 5\cos\left(\frac{\pi}{3}\right) = \frac{5}{2}$
and $y = 2\sin\frac{\pi}{2} = 2$, i.e. point $\left(\frac{5}{2}, 2\right)$
 $t = \frac{3\pi}{4} \Rightarrow x = 5\cos\left(\frac{5\pi}{6}\right) = -\frac{5\sqrt{3}}{2}$
and $y = 2\sin\frac{3\pi}{2} = -2$, i.e. point $\left(-\frac{5\sqrt{3}}{2}, -2\right)$
 $t = \frac{5\pi}{4} \Rightarrow x = 5\cos\left(\frac{4\pi}{3}\right) = -\frac{5}{2}$
and $y = 2\sin\frac{5\pi}{2} = 2$, i.e. point $\left(-\frac{5}{2}, 2\right)$
 $t = \frac{7\pi}{4} \Rightarrow x = 5\cos\left(\frac{11\pi}{6}\right) = \frac{5\sqrt{3}}{2}$
and $y = 2\sin\frac{7\pi}{2} = -2$, i.e. point $\left(\frac{5\sqrt{3}}{2}, -2\right)$

c The curve cuts the x-axis when
$$y = 0$$
, i.e. when $2 \sin 2t = 0$
 $2t = 0, \pi, 2\pi, 3\pi, 4\pi$
 $t = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi$
 $t = 0 \Rightarrow x = 5 \cos \frac{\pi}{12} = 4.83$, i.e. $(4.83, 0)$
with gradient $\frac{dy}{dx} = \frac{-4}{5 \sin \frac{\pi}{12}} = -3.09$
 $t = \frac{\pi}{2} \Rightarrow x = 5 \cos \frac{7\pi}{12} = -1.29$, i.e. $(-1.29, 0)$
with gradient $\frac{dy}{dx} = \frac{4}{5 \sin \frac{7\pi}{12}} = 0.828$
 $t = \pi \Rightarrow x = 5 \cos \frac{13\pi}{12} = -4.83$, i.e. $(-4.83, 0)$
with gradient $\frac{dy}{dx} = \frac{-4}{5 \sin \frac{13\pi}{12}} = 3.09$
with gradient $\frac{dy}{dx} = \frac{4}{5 \sin \frac{13\pi}{12}} = 1.29$, i.e. $(1.29, 0)$
with gradient $\frac{dy}{dx} = \frac{4}{5 \sin \frac{19\pi}{12}} = -0.828$

The curve cuts the y-axis when $x = 0$.
i.e. when $5 \cos \left(t + \frac{\pi}{12}\right) = 0$
 $t + \frac{\pi}{12} = \frac{\pi}{2}, \frac{3\pi}{2}$
 $t = \frac{5\pi}{12}, \frac{17\pi}{12}$
 $t = \frac{5\pi}{12} \Rightarrow y = 2 \sin \frac{5\pi}{6} = 1$, i.e. $(0, 1)$
with gradient $\frac{dy}{dx} = \frac{-4 \cos \frac{5\pi}{6}}{5 \sin \frac{\pi}{2}} = 0.693$
 $t = \frac{17\pi}{12} \Rightarrow y = 2 \sin \frac{17\pi}{6} = 1$, i.e. $(0, 1)$
with gradient $\frac{dy}{dx} = \frac{-4 \cos \frac{17\pi}{6}}{5 \sin \frac{\pi}{2}} = -0.693$

So the curve cuts the y-axis twice at (0, 1) with gradients 0.693 and -0.693.

d
$$\frac{dx}{dy} = -\frac{5\sin\left(t + \frac{\pi}{12}\right)}{4\cos 2t}$$

$$\frac{dx}{dy} = 0 \text{ when } \sin\left(t + \frac{\pi}{12}\right) = 0$$

$$t + \frac{\pi}{12} = \pi, 2\pi$$

$$t = \frac{11\pi}{12}, \frac{23\pi}{12}$$

$$t = \frac{11\pi}{12} \Rightarrow y = 2\sin\frac{11\pi}{6} = -1$$
and $x = 5\cos\left(\frac{11\pi}{12} + \frac{\pi}{12}\right) = -5$

$$t = \frac{23\pi}{12} \Rightarrow y = 2\sin\frac{23\pi}{6} = -1$$
and $x = 5\cos\left(\frac{23\pi}{12} + \frac{\pi}{12}\right) = 5$
So points where curve is vertice.

So points where curve is vertical are (-5, -1) and (5, -1).

