Variable acceleration 11A

1 a
$$s = 9(1) - 1^3 = 8 \text{ m}$$

b
$$9t - t^3 = 0$$

 $t(9 - t^2) = 0$
Either $t = 0$ or $t^2 = 9$
 $\Rightarrow t = 0$ or $t = \pm 3$

2 a At
$$t = 2$$
,
 $s = 5(2)^2 - 2^3 = 12$
At $t = 4$,
 $s = 5(4)^2 - 4^3 = 16$
Change in displacement = $16 - 12 = 4$ m

b At
$$t = 3$$
,
 $s = 5(3)^2 - 3^3 = 18$
Change in displacement in the third second = $18 - 12 = 6$ m

3 a
$$v = 3 + 5(1) - 1^2 = 7 \text{ m s}^{-1}$$

At
$$t = 0$$
, $v = 3$
 $v = 3$ again when $5t - t^2 = 0 \Rightarrow t = 5$

Using symmetry, turning point is when t = 2.5. When t = 2.5, $v = 3 + 5(2.5) - 2.5^2 = 9.25$ So in $0 \le t \le 4$, range of v is $3 \le v \le 9.25$ Greatest speed is 9.25 m s^{-1} .

$$\mathbf{c} \quad v = 3 + 5(7) - 7^2 \\
= 3 + 35 - 49 \\
= -11$$

When t = 7, the velocity of the particle is -11 m s^{-1} . This means it is moving in the opposite direction to that in which it was initially travelling.

4 a
$$s = 0$$
 when
$$\frac{1}{5}(4t - t^2) = 0$$

$$\frac{1}{5}t(4 - t) = 0$$

$$\Rightarrow t = 0 \text{ or } t = 4$$
By symmetry, maximum distance is when $t = 2$.
When $t = 2$, $s = \frac{1}{5}(4(2) - 2^2)$

- 4 a The maximum displacement is 0.8 m.
 - **b** When the toy car returns to P, s = 0

$$\frac{1}{5}(4t - t^2) = 0$$

$$\frac{1}{5}t(4-t) = 0$$

$$\Rightarrow t = 0 \text{ or } t = 4$$

The toy car returns to P after 4 s.

- c The toy car travels to maximum distance and back again. So total distance = 0.8 + 0.8 = 1.6 m
- **d** The model is valid for $0 \le t \le 4$.
- **5 a** When t = 0,

$$v = 0 - 0 + 8 = 8$$

The initial velocity is 8 m s⁻¹.

b
$$3t^2 - 10t + 8 = 0$$

$$(3t - 4)(t - 2) = 0$$

The body is at rest when $t = \frac{4}{3}$ and t = 2.

 $c 3t^2 - 10t + 8 = 5$

$$3t^2 - 10t + 3 = 0$$

$$(3t - 1)(t - 3) = 0$$

Velocity = 5 m s⁻¹ when $t = \frac{1}{3}$ and t = 3.

d

Using the answer to part **b** and symmetry, the body has its maximum/minimum velocity when $t = \frac{5}{3}$ s.

When $t = \frac{5}{3}$,

$$v = 3\left(\frac{5}{3}\right)^2 - 10\left(\frac{5}{3}\right) + 8$$

$$=\frac{25}{3} - \frac{50}{3} + 8$$

$$=-\frac{25}{3}+8$$

5 d
$$v = -\frac{1}{3}$$

So in $0 \le t \le 2$, range of v is $-\frac{1}{3} \le v \le 8$.

Greatest speed is 8 m s⁻¹.

6 a
$$8t - 2t^2 = 0$$

$$2t(4-t)=0$$

The particle is next at rest after 4 s.

b By symmetry, minimum/maximum velocity is when t = 2.

When
$$t = 2$$
,

$$v = 8(2) - 2(2)^2$$

$$=8$$

So in $0 \le t \le 4$, greatest speed is 8 m s^{-1} .

7
$$s = 3t^2 - t^3$$

Model is valid until particle returns to starting point, i.e. until next point at which s = 0.

After this it would have a negative displacement, i.e. be beyond O.

$$s = 0$$
 when

$$3T^2 - T^3 = 0$$

$$T^2(3-T)=0$$

$$T \neq 0$$
 so $T = 3$

8 a
$$\frac{1}{5}(3t^2-10t+3)=0$$

$$3t^2 - 10t + 3 = 0$$

$$(3t - 1)(t - 3) = 0$$

Particle is at rest when $t = \frac{1}{3}$ and t = 3.

b Using answer to part **a** and symmetry, the body has its maximum/minimum velocity when $t = \frac{5}{3}$.

When
$$t = \frac{5}{3}$$
,

$$v = \frac{1}{5} \left(3 \left(\frac{5}{3} \right)^2 - 10 \left(\frac{5}{3} \right) + 3 \right)$$

$$=\frac{1}{5}\left(\frac{25}{3}-\frac{50}{3}+\frac{9}{3}\right)$$

$$=\frac{1}{5}\left(-\frac{16}{3}\right)$$

$$=-\frac{16}{15}$$

So in $0 \le t \le 3$, greatest speed is $\frac{16}{15}$ m s⁻¹.