Representations of data 3A

1 IQR =
$$68-46 = 22$$

$$46-1.5\times22=13$$

$$68+1.5\times22=101$$

- **a** 7 is an outlier as 7 < 13.
- **b** 88 is not an outlier as 13 < 88 < 101.
- **c** 105 is an outlier as 105 > 101.
- 2 a Outliers are < 400 180 = 220 or > 580 + 180 = 760. So there are no outliers.
 - **b** Outliers are < 260 80 = 180 or > 340 + 80 = 420. So 170 g and 440 g are both outliers.
 - **c** 760 g
- 3 **a** Mean = 6.1 kg

Standard deviation =
$$\sqrt{4.2}$$

Mean
$$-2 \times$$
 standard deviation $= 6.1 - 2 \times \sqrt{4.2} = 2.00$ (to 3 s.f.)

Mean + 2 × standard deviation =
$$6.1 + 2 \times \sqrt{4.2} = 10.2$$
 (to 3 s.f.)

So 11.5 kg is an outlier.

b The smallest is 2.00 kg.

The largest is 10.2 kg.

4 a Mean =
$$\frac{\sum x}{n} = \frac{92}{9} = 10.2$$
 (to 3 s.f.)

Standard deviation
$$= \sqrt{\frac{\sum x^2}{n} - \left(\frac{\sum x}{n}\right)^2}$$
$$= \sqrt{\frac{1428}{9} - \left(\frac{92}{9}\right)^2}$$
$$= 7.36 \text{ (to 3 s.f.)}$$

- **b** Mean $-2 \times$ standard deviation = -4.50 (to 3 s.f.)
 - Mean $+ 2 \times$ standard deviation = 24.9 (to 3 s.f.)

30 is an outlier, as it is more than 2 standard deviations above the mean (30 > 24.9).

c It could be the age of a parent at the party.

d
$$\sum x - 30 = 92 - 30 = 62$$

Mean =
$$\frac{62}{9}$$
 = 7.75

$$\sum x^2 - 30^2 = 1428 - 900 = 528$$

Standard deviation =
$$\sqrt{\frac{528}{8} - \left(\frac{62}{8}\right)^2} = 2.44$$
 (to 3 s.f.)