Statistical distributions, Mixed Exercise 6

1 a

	x	1	2	3	4	5	6						
	$\mathbf{P}(X=x)$	$\frac{1}{21}$	$\frac{2}{21}$	$\frac{3}{21}$	$\frac{4}{21}$	$\frac{5}{21}$	$\frac{6}{21}$						
b	$P(2 < X \le 3)$	5) =	P(X	= 3) -	+ P(2	<i>K</i> = 4	·) + P	(X = 5) =	$=\frac{3}{21}+$	$-\frac{4}{21}+$	$\frac{5}{21}$ =	$=\frac{12}{21}$	$=\frac{4}{7}$
a	0.1+0.2+	0.3+	• <i>r</i> + 0).1+().1=	1							

r = 1 - 0.8= 0.2

b
$$P(-1 \le X < 2) = P(-1) + P(0) + P(1) = 0.2 + 0.3 + 0.2 = 0.7$$

3 a

2

x	1	2	3	4
P(X=x)	$\frac{2}{26}$	$\frac{5}{26}$	$\frac{8}{26}$	$\frac{11}{26}$

b $P(2 < X \le 4) = P(X = 3) + P(X = 4) = \frac{19}{26}$

4 a For a discrete uniform distribution, the probability of choosing each counter must be equal.

- **b** i $P(X=5) = \frac{1}{16}$
 - **ii** The prime numbers are 2, 3, 5, 7, 11 and 13

P(X is prime) =
$$\frac{6}{16} = \frac{3}{8}$$

iii P(3 ≤ X < 11) = $\frac{8}{16} = \frac{1}{2}$

5 a

У	1	2	3	4	5
$\mathbf{P}(Y=y)$	$\frac{1}{k}$	$\frac{2}{k}$	$\frac{3}{k}$	$\frac{4}{k}$	$\frac{5}{k}$
$\frac{1}{k} + \frac{2}{k} + \frac{2}{k}$	$\frac{3}{k} + \frac{4}{k}$	$+\frac{5}{k}$	= 1		
$\frac{15}{k} = 1, k =$	15				

SolutionBank

Statistics and Mechanics Year 1/AS

5 b

У	1	2	3	4	5
$\mathbf{P}(Y=y)$	$\frac{1}{15}$	$\frac{2}{15}$	$\frac{3}{15} = \frac{1}{5}$	$\frac{4}{15}$	$\frac{5}{15} = \frac{1}{3}$

c
$$P(Y>3) = P(Y=4) + P(Y=5) = \frac{4}{15} + \frac{5}{15} = \frac{9}{15} = \frac{3}{5}$$

6 a

t	0	1	2	3	4
$\mathbf{P}(T=t)$	$\frac{81}{256}$	$\frac{108}{256}$	$\frac{54}{256}$	$\frac{12}{256}$	$\frac{1}{256}$

b
$$P(T < 3) = P(T = 0) + P(T = 1) + P(T = 2) = \frac{243}{256}$$

С

S	1	2	3	4	5
$\mathbf{P}(S=s)$	$\frac{1}{4}$	$\frac{3}{16}$	$\frac{9}{64}$	$\frac{27}{256}$	$\frac{81}{256}$

d
$$P(S > 2) = P(S = 3) + P(S = 4) + P(S = 5) = \frac{9}{16}$$

7 **a**
$$P(X=20) = {\binom{30}{20}} (0.73)^{20} (0.27)^{10} = \frac{30!}{20!10!} (0.73)^{20} (0.27)^{10} = 0.114 \text{ (to 3 s.f.)}$$

b Using the binomial cumulative function on a calculator where x = 13, n = 30 and p = 0.73, P($X \le 13$) = 0.000580 (to 3 s.f.)

- c Using the binomial cumulative function on a calculator where x = 11 and 25, n = 30 and p = 0.73, P(11 < X ≤ 25) = P(X ≤ 25) - P(X ≤ 11) = 0.937302995 - 0.000033512 = 0.937 (to 3 s.f.)
- 8 a Sequence is: H H H H H T

Probability:
$$\left(\frac{2}{3}\right)^5 \times \frac{1}{3} = \frac{32}{729}$$
 or 0.0439 (to 3 s.f.)

b Let X = 'number of tails in the first 8 tosses', then

SolutionBank

Statistics and Mechanics Year 1/AS

P(X = 2) =
$$\binom{8}{2} \left(\frac{1}{3}\right)^2 \times \left(\frac{2}{3}\right)^6 = 0.273$$
 (to 3 s.f.)

9 X = number of patients waiting more than $\frac{1}{2}$ hour

 $X \sim B(12, 0.3)$

- **a** $P(X=0) = (0.7)^{12} = 0.01384... = 0.0138$ (to 3 s.f.)
- **b** $P(X > 2) = 1 P(X \le 2) = 1 0.2528 = 0.7472 = 0.747$ (to 3 d.p.)
- **10 a** i There are *n* independent trials.
 - ii n is a fixed number.
 - iii The outcome of each trial is a success or a failure.
 - iv The probability of success at each trial is constant.
 - v The outcome of any trial is independent of any other trial.
 - **b** X = number of successes

$$X \sim B(10, 0.05)$$

 $P(X \ge 2) = 1 - P(X \le 1) = 1 - 0.9139 = 0.0861$ (to 3 s.f.)

c Y_n = 'number of successes in *n* houses'

$$Y_n \sim B(n, 0.05)$$

Looking for smallest *n* such that $P(Y_n \ge 1) > 0.99$ or, equivalently, $P(Y_n = 0) < 0.01$.

$$P(Y_n = 0) = 0.95^n < 0.01$$

So n = 90 using logarithms.

- 11 X = 'number of correctly answered questions' and $X \sim B(10, 0.5)$
 - **a** $P(X=10) = (0.5)^{10} = 0.00097656... = 0.000977$ (to 3 s.f.)
 - **b** $P(X \ge 8) = 1 P(X \le 7) = 1 0.9453 = 0.0547$ (to 3 s.f. using tables)

12

x	1	2	3	4	5	6
P(X=x)	р	р	р	р	2p	р

 $7 p = 1 \Longrightarrow p = \frac{1}{7}$

a Sequence: $\overline{5} \ \overline{5} \ \overline{5} \ \overline{5} \ \overline{5} \ 5$

Probability: $(\frac{5}{7})^5(\frac{2}{7}) = 0.0531$ (to 3 s.f.)

Statistics and Mechanics Year 1/AS

12 b Y = 'number of 5s in 8 throws'

$$Y \sim B(8, \frac{2}{7})$$
$$P(Y = 3) = {\binom{8}{3}} \times \left(\frac{2}{7}\right)^3 \times \left(\frac{5}{7}\right)^5 = 0.24285 = 0.243 \text{ (to 3 s.f.)}$$

13 X = 'number of green chairs in sample of 10'

a
$$X \sim B(10, 0.15)$$

- **b** $P(X \ge 5) = 1 P(X \le 4) = 1 0.9901 = 0.0099$ (tables)
- c $P(X = 2) = P(X \le 2) P(X \le 1) = 0.8202 0.5443 = 0.2759$ (tables)
- 14 X = 'number of yellow beads in sample of 20' and assume $X \sim B(20, 0.45)$
 - **a** $P(X < 12) = P(X \le 11) = 0.8692$ (tables)
 - **b** $P(X = 12) = P(X \le 12) P(X \le 11) = 0.9420 0.8692 = 0.0728$ (tables)
- **15 a** $P(X \ge 10) = 1 P(X \le 9) = 1 0.1275 = 0.8725$ (tables)

b $P(X \ge 10 \text{ in } 7 \text{ out of } 12 \text{ sets}) = {\binom{12}{7}} (0.8725)^7 (0.1275)^5$ = 0.0103 (to 3 s.f.)

c Let Y = 'number of sets out of 12 that she hits the bullseye with at least 50% of her arrows', then

 $Y \sim B(12, 0.8725)$

Using the binomial cumulative function on a calculator where x = 5, n = 12 and p = 0.8725,

 $P(Y < 6) = P(Y \le 5) = 0.0002407$

Challenge

 $Y \sim B(18, 0.25)$

 $P(Y \ge 11) = 1 - P(Y \le 10) = 1 - 0.9988 = 0.0012$ (tables)