Hypothesis testing 7B

- 1 a The critical value is the first value to fall inside of the critical region.
 - **b** A critical region is a region of the probability distribution which, if the test statistic falls within it, would cause you to reject the null hypothesis.
 - **c** The acceptance region is the area in which we accept the null hypothesis.
- **2** B (10, 0.2)

$$P(X \ge 4) = 1 - P(X \le 3)$$
$$= 1 - 0.8791$$
$$= 0.1209 > 0.05$$

$$P(X \ge 5) = 1 - P(X \le 4)$$
$$= 1 - 0.9672$$
$$= 0.0328 < 0.05$$

The critical value is x = 5 and the critical region is $X \ge 5$ since $P(X \ge 5) = 0.0328 < 0.05$

3 B (20, 0.15)

$$P(X \le 1) = 0.1756 > 0.05$$

 $P(X = 0) = 0.0388 < 0.05$

The critical value is x = 0 and the critical region is X = 0

4 a B (20, 0.4)

$$P(X \le 4) = 0.0510 > 0.025$$

 $P(X \le 3) = 0.0160 < 0.025$

The critical value is x = 3

$$P(X \ge 13) = 1 - P(X \le 12) = 1 - 0.9790 = 0.0210 < 0.025$$

 $P(X \ge 12) = 1 - P(X \le 11) = 1 - 0.9435 = 0.0565 > 0.025$

The critical value is x = 13

The critical region is $X \ge 13$ and $X \le 3$

b The actual significance level is 0.021 + 0.016 = 0.037 = 3.7%

5 B (20, 0.18)

$$B(X=0) = 0.0189 < 0.05$$

$$B(X \le 1) = 0.1018 > 0.05$$

The critical value is x = 0

The critical region is X = 0

6 a B (10, 0.22)

$$P(X < 5) = 0.952$$

$$P(X \ge 5) = 0.0478 > 0.005$$

The critical value is x = 5

The critical region is $X \ge 5$

- **b** The actual significance level is 0.0478 = 4.78%
- 7 a The test statistic is the number of components in the sample that fail.
 - **b** H₀: p = 0.3 H₁: p < 0.3
 - **c** Assume H₀ is true then $X \sim B(20, 0.3)$

$$P(X \le 2) = 0.0355$$
 (closer to 0.05)
 $P(X \le 3) = 0.1071$

The critical region is $X \le 2$

- **d** 0.0355 = 3.55%
- **8** a The test statistic is the number of seedlings that survive.

$$H_0: p = \frac{1}{3},$$

H₁:
$$p > \frac{1}{3}$$

b Assume H₀ is true then $X \sim B(36, \frac{1}{3})$

Using a calculator

$$P(X \ge 16) = 1 - P(X \le 15) = 1 - 0.8906 = 0.1094 > 0.1$$

$$P(X \ge 17) = 1 - P(X \le 16) = 1 - 0.9416 = 0.0584 < 0.1$$

The critical region is $X \ge 17$

 $\mathbf{c} \quad 0.0584 = 5.84\%$

9 a In a given time, the number of customers choosing lasagne out of the total number.

H₀:
$$p = 0.2$$

H₁: $p \neq 0.2$

b Assume H₀ is true then $X \sim B(25, 0.2)$

Consider the lower tail:

$$P(X \le 0) = 0.0038$$

 $P(X \le 1) = 0.0274$ (closer to 0.025)

Consider the upper tail:

$$P(X \ge 9) = 1 - P(X \le 8) = 1 - 0.9532 = 0.0468$$

 $P(X \ge 10) = 1 - P(X \le 9) = 1 - 0.9827 = 0.0173$ (closer to 0.025)

The critical region is $X \le 1$ and $X \ge 10$.

c The probability of incorrectly rejecting H_0 is 0.0274 + 0.0173 = 0.0447 = 4.47%

Challenge

a Assume H₀ is true then $X \sim B(50, 0.7)$

Consider the lower tail:

$$P(X \le 29) = 0.0478$$
 (closer to 0.05)
 $P(X \le 30) = 0.0848$

Consider the upper tail:

$$P(X \ge 41) = 1 - P(X \le 40) = 1 - 0.9598 = 0.0402$$
 (closer to 0.05)
 $P(X \ge 40) = 1 - P(X \le 39) = 1 - 0.9211 = 0.0789$

The critical region is $X \le 29$ and $X \ge 41$

b The probability of one observation falling within the critical region is 0.0478 + 0.0402 = 8.8%

The probability of two observations falling within the critical region is $0.088^2 = 0.007744 = 0.77\%$

The probability that Chloe has incorrectly rejected H₀ is 0.77%