Hypothesis testing 7C

1 Distribution, B(10, 0.25)

$$H_0: p = 0.25$$
 $H_1: p > 0.25$

$$P(X \ge 5) = 1 - P(X \le 4)$$
$$= 1 - 0.9219$$
$$= 0.0781 > 0.05$$

There is insufficient evidence to reject H_0 so there is no reason to doubt p = 0.25

2 Distribution, B(10, 0.40)

$$H_0: p = 0.40$$
 $H_1: p < 0.40$

$$P(X \le 1) = 0.0464 < 0.05$$

There is sufficient evidence to reject H_0 so p < 0.04

3 Distribution, B(20, 0.30)

$$H_0: p = 0.30$$
 $H_1: p > 0.30$

$$P(X \ge 10) = 1 - P(X \le 9)$$
$$= 1 - 0.9520$$
$$= 0.0480 < 0.05$$

There is sufficient evidence to reject H_0 so p > 0.3

4 Distribution, B(20, 0.45)

$$H_0: p = 0.45$$
 $H_1: p < 0.45$

$$P(X \le 3) = 0.0049 < 0.01$$

There is sufficient evidence to reject H_0 so p < 0.45

5 Distribution, B(20, 0.28)

$$H_0: p = 0.28$$
 $H_1: p < 0.28$

$$p$$
-value = $P(X \le 2) = 0.0526 > 0.05$

There is insufficient evidence to reject H_0 so there is no reason to doubt p = 0.28

6 Distribution, B(8, 0.32)

$$H_0: p = 0.32$$
 $H_1: p < 0.32$

$$P(X \ge 7) = 1 - P(X \le 6)$$
$$= 1 - 0.9980$$
$$= 0.002 < 0.05$$

There is sufficient evidence to reject H_0 so p < 0.32

7 Distribution, B(12, $\frac{1}{6}$)

$$H_0: p = \frac{1}{6}$$
 $H_1: p < \frac{1}{6}$

$$P(X \le 1) = 0.3813 > 0.05$$

There is insufficient evidence to reject H_0 so there is no evidence that the probability of a 6 on this dice is less than $\frac{1}{6}$

8 a Distribution, B(n, 0.68)

Reasons: - Fixed number of trials.

- utcomes of the trials are independent.

- There are two outcomes, success and failure.

- The probabil ty of success is constant.

b Distribution, B(10, 0.68)

$$H_0: p = 0.68$$
 $H_1: p < 0.68$

$$P(X \le 3) = 0.0155 < 0.05$$

There is sufficient evidence to reject H_0 so p < 0.68. The treatment is not as effective as claimed.

9 a X is the number of seeds in the trial for which the germination method was successful. p is the probability of success for each seed.

$$X \sim B(20, p)$$

$$H_0$$
: $p = 0.4$ H_1 : $p > 0.4$

$$P(X \ge 12) = 1 - P(X \le 11) = 1 - 0.9435 = 0.0565 \ge 0.05$$

 $P(X \ge 13) = 1 - P(X \le 12) = 1 - 0.9790 = 0.021 \le 0.05$

The critical region is $X \ge 13$

- **9 b** 14 lies within the critical region, so we can reject the null hypothesis. There is evidence that the new technique has improved the number of plants that germinate.
- 10 a The test statistic is the number of people who support the candidate.

$$H_0$$
: $p = 0.35$ H_1 : $p > 0.35$

b $X \sim B(50, 0.35)$

$$P(X \ge 23) = 1 - P(X \le 22) = 1 - 0.9290 = 0.071 > 0.05$$

 $P(X \ge 24) = 1 - P(X \le 23) = 1 - 0.9604 = 0.0396 < 0.05$

The critical region is $X \ge 24$

c 28 lies in the critical region, so we can reject the null hypothesis. There is evidence that the candidate's level of popularity has increased.