Hypothesis testing, Mixed Exercise 7

1 $X \sim B(10, 0.20)$

$$H_0: p = 0.20$$
 $H_1: p > 0.20$

$$P(X \ge 3) = 1 - P(X \le 2)$$

= 1 - 0.6778
= 0.3222 > 0.05

There is insufficient evidence to reject H_0 There is no evidence that the trains are late more often.

2
$$X \sim B(5, 0.5)$$

 $H_0: p = 0.50$ $H_1: p > 0.50$

$$P(X \ge 4) = 1 - P(X \le 3)$$

= 1 - 0.8125
= 0.1875 > 0.05

There is insufficient evidence to reject H_0 There is insufficient evidence that the company's claims are true.

3 a Fixed number; independent trials; two outcomes (pass or fail); p constant for each car.

b
$$X \sim B(5, 0.30)$$

 $P(all pass) = 0.70^5 = 0.16807$

c $X \sim B(10, 0.30)$

 $H_0: p = 0.30$ $H_1: p < 0.30$

$$P(X \le 2) = 0.3828 > 0.05$$

There is insufficient evidence to reject H_0 .

There is no evidence that the garage fails fewer than the national average.

Statistics and Mechanics Year 1/AS

SolutionBank

4 a $X \sim B(50, 0.1)$

 $H_0: p = 0.10$ $H_1: p \neq 0.10$

 $P(X \le 1) = 0.0338$ (closer to 0.025) P(X = 0) = 0.0052critical value = 1

 $P(X \ge 9) = 1 - P(X \le 8) = 1 - 0.9421 = 0.0579$ P(X \ge 10) = 1 - P(X \le 9) = 1 - 0.9755 = 0.0245 (closer to 0.025)

critical value = 10

Critical region $X \le 1$ and $X \ge 10$

- **b** Actual significance level = 0.0338 + 0.0245 = 0.0583 = 5.83%
- **c** $X \sim B(20, 0.1)$

 $H_0: p = 0.1$ $H_1: p > 0.1$

$$P(X \ge 4) = 1 - P(X \le 3)$$

= 1 - 0.8670
= 0.133 > 0.1

p-value = 0.133

Accept H₀. There is no evidence that the proportion of defective articles has increased.

5 $X \sim B(20, 0.5)$ H₀: p = 0.50 H₁: $p \neq 0.50$

8 used Oriels powder.

 $P(X \le 8) = 0.2517 > 0.025$

There is insufficient evidence to reject H_0 . There is no evidence that the claim is wrong. **6** $X \sim B(50, 0.2)$

a $P(X \le 4) = 0.0185$ (closer to 0.025) $P(X \le 5) = 0.0480$

 $c_1 = 4$

 $P(X \ge 16) = 1 - P(X \le 15) = 1 - 0.9692 = 0.0308 \text{ (closer to } 0.025)$ $P(X \ge 17) = 1 - P(X \le 16) = 1 - 0.9856 = 0.0144$

```
c_2 = 16
```

Critical region $X \le 4$ and $X \ge 16$

- **b** Actual significance level = 0.0185 + 0.0308 = 0.0493 = 4.93%
- **c** This is not in the critical region. Therefore, there is insufficient evidence to reject H_0 . There is no evidence to suggest that the proportion of people buying that certain make of computer differs from 0.2.
- 7 **a** i A hypothesis is a statement made about the value of a population parameter. A hypothesis test uses a sample or an experiment to determine whether or not to reject the hypothesis.
 - ii The critical value is the first value to fall inside of the critical region.

iii The acceptance region is the region where we accept the null hypothesis.

b $H_0: p = 0.2$ $H_1: p \neq 0.2$

If H_0 is true $X \sim B(20, 0.2)$

Let c_1 and c_2 be the two critical values so $P(X \le c_1) \le 0.05$ and $P(X \ge c_2) \le 0.05$

For the lower tail:

P(X = 0) = 0.0115 < 0.05 $P(X \le 1) = 0.0692 > 0.05$

So $c_1 = 0$

For the upper tail:

 $P(X \ge 7) = 1 - P(X \le 6) = 1 - 0.9133 = 0.0978 > 0.05$ $P(X \ge 8) = 1 - P(X \le 7) = 1 - 0.9679 = 0.0321 < 0.05$

So $c_2 = 8$

So the critical region is X = 0 and $X \ge 8$

c Actual significance level = 0.0115 + 0.0321 = 0.0436 = 4.36%

Statistics and Mechanics Year 1/AS

- 7 d As 7 does not lie in the critical region, H₀ is not rejected. Therefore, the proportion of times that Johan is late for school has not changed.
- 8 X is the number of days with zero or a trace of rain.

 $X \sim B(30, 0.5)$

H₀: p = 0.5 H₁: p > 0.5

 $P(X \ge 19) = 1 - P(X \le 18) = 1 - 0.8998 = 0.1002 > 0.05$ $P(X \ge 20) = 1 - P(X \le 19) = 1 - 0.9506 = 0.0494 < 0.05$

The critical region is $X \ge 20$

21 lies in the critical region, so we can reject the null hypothesis. There is evidence that the likelihood of a rain-free day in 2015 has increased.

9 a $H_0: p = 0.35$ $H_1: p \neq 0.35$

If H_0 is true $X \sim B(30, 0.35)$

Let c_1 and c_2 be the two critical values so $P(X \le c_1) \le 0.025$ and $P(X \ge c_2) \le 0.025$

For the lower tail:

 $P(X \le 5) = 0.0233 < 0.025$ $P(X \le 6) = 0.0586 > 0.025$

So $c_1 = 5$

For the upper tail:

 $P(X \ge 16) = 1 - P(X \le 15) = 1 - 0.9699 = 0.0301, 0.0301 - 0.025 = 0.0051$ $P(X \ge 17) = 1 - P(X \le 16) = 1 - 0.9876 = 0.0124, 0.025 - 0.0124 = 0.0126$

So $c_2 = 16$

So the critical region is $X \le 5$ and $X \ge 16$

- **b** Actual significance test is 0.0233 + 0.0301 = 0.0534 = 5.34%
- c X = 4 lies in the critical region so there is enough evidence to reject H₀.

10 a $X \sim B(20, 0.85)$

b
$$P(X=16) = {\binom{20}{16}} 0.85^{16} 0.15^4 = 0.18$$

SolutionBank

Statistics and Mechanics Year 1/AS

10 c X is the number of patients that recover p is the probability that a patient recovers

 $H_0: p = 0.85$ $H_1: p < 0.85$

If H_0 is true $X \sim B(30, 0.85)$

Expected value would be $30 \times 0.85 = 25.5$ The observed value, 20, is less than this so consider P($X \le 20$)

p-value = $P(X \le 20) = 0.009657... < 0.05$ (one-tailed)

There is evidence to reject H_0 . The percentage of patients who recover after treatment with the new ointment is lower than 85%.

Large Data Set

1 a X is the number of days with a recorded daily mean temperature greater than 15 °C.

 $X \sim (10, 0.163)$

 $H_0: p = 0.163$ $H_1: p > 0.163$

 $P(X \ge 4) = 1 - P(X \le 3) = 1 - 0.935 = 0.065 > 0.05$ $P(X \ge 5) = 1 - P(X \le 4) = 1 - 0.9959 = 0.0141 < 0.05$

The critical region is $X \ge 5$

- **b** A random sample of temperatures, 15.6, 17.3, 12.5, 14.1, 11.9, 14.5, 13.0, 9.1, 14.1, 10.0, 9.3 has 2 days with a daily mean temperature greater than 15 °C.
- c 2 does not lie in the critical region so H₀ is not rejected. Therefore, there is no reason to suggest that $p \neq 0.163$.
- 2 X is the number of days with daily mean temperature greater than 25 °C.

X~(10, 0.23)

H₀: p = 0.23 H₁: p > 0.23

 $P(X \ge 5) = 1 - P(X \le 4) = 1 - 0.9431 = 0.0569 > 0.05$ $P(X \ge 6) = 1 - P(X \le 5) = 1 - 0.9870 = 0.0130 < 0.05$

The critical region is $X \ge 6$

A random sample of temperatures 17.5, 18.9, 25.9, 27.7, 30.4, 26.6, 27.4, 27.0, 19.4 and 13.9 has 6 days with a mean temperature greater than $25 \,^{\circ}$ C.

6 does lie in the critical region so H₀ is rejected. Therefore, there is reason to suggest that p > 0.23.