Modelling in mechanics 8D

1 a
$$2.1 \text{ m s}^{-1}$$

$$c -1.8 \text{ m s}^{-1}$$

d
$$-2.7 \text{ m s}^{-1}$$

$$f = 2.5 \text{ m s}^{-1}$$

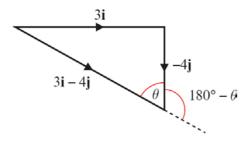
2 a speed
$$|\mathbf{v}| = \sqrt{12^2 + 10^2} = \sqrt{244}$$

The speed of the car is 15.6 m s^{-1} (to 3 s.f.)

b Let the acute angle made with **i** be θ , then

$$\begin{array}{c}
12\mathbf{i} \\
\theta
\end{array}$$

$$12\mathbf{i} - 10\mathbf{j}$$


$$\tan \theta = \frac{10}{12} = 0.8333$$
 so $\theta = 39.8^{\circ}$ (to 3 s.f.)

The direction of motion of the car is 39.8° from the **i** vector.

3 **a**
$$|\mathbf{a}| = \sqrt{3^2 + 4^2} = \sqrt{25}$$

The magnitude of the acceleration is 5 m s^{-2} .

b Let the acute angle made with **j** be θ

$$\tan \theta = \frac{3}{4} = 0.75 \text{ so } \theta = 36.9^{\circ} \text{ (to 3 s.f.)}$$

Angle required =
$$180^{\circ} - \theta = 180^{\circ} - 36.9^{\circ} = 143.1^{\circ}$$

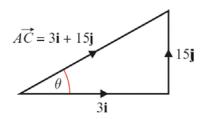
The direction of the acceleration is 143° from the **j** vector.

4 a $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$

$$\overrightarrow{AC} = \begin{pmatrix} 10 \\ 10 \\ 3 \end{pmatrix} + \begin{pmatrix} -7 \\ 12 \end{pmatrix} = \begin{pmatrix} 3 \\ 15 \end{pmatrix}$$

$$\left| \overrightarrow{AC} \right| = \sqrt{3^2 + 15^2} = \sqrt{234}$$

The magnitude of the displacement is 15.3 m (to 3 s.f.)


b
$$|\overrightarrow{AB}| = \sqrt{10^2 + 3^2} = \sqrt{109}$$

$$\left|\overrightarrow{BC}\right| = \sqrt{7^2 + 12^2} = \sqrt{193}$$

$$\left| \overrightarrow{AB} \right| + \left| \overrightarrow{BC} \right| = \sqrt{109} + \sqrt{193} = 24.3$$

The girl cycles 24.3 km (to 3 s.f.)

c Let the acute angle made with **i** be θ

$$\tan \theta = \frac{15}{3} = 5 \text{ so } \theta = 78.7^{\circ} \text{ (to 3 s.f.)}$$

The direction of motion of the car is 78.7° from the **i** vector.