## **Constant acceleration 9D**

1 
$$a = 2.5, u = 3, s = 8, v = ?$$

$$v^2 = u^2 + 2as = 3^2 + 2 \times 2.5 \times 8 = 9 + 40 = 49$$
  
 $v = \sqrt{49} = 7$ 

The velocity of the particle as it passes through B is  $7 \,\mathrm{m\,s}^{-1}$ .

2 
$$u = 8, t = 6, s = 60, a = ?$$

$$s = ut + \frac{1}{2}at^{2}$$

$$60 = 8 \times 6 + \frac{1}{2} \times a \times 6^{2} = 48 + 18a$$

$$a = \frac{60 - 48}{18} = \frac{2}{3}$$

The acceleration of the car is  $0.667 \,\mathrm{m \, s^{-2}}$  (to 3 s.f.)

3 
$$u = 12, v = 0, s = 36, a = ?$$

$$v^{2} = u^{2} + 2as$$

$$0^{2} = 12^{2} + 2 \times a \times 36 = 144 + 72a$$

$$a = -\frac{144}{72} = -2$$

The deceleration is  $2 \text{ m s}^{-2}$ .

4 
$$u = 15$$
,  $v = 20$ ,  $s = 500$ ,  $a = ? 54 \text{ km h}^{-1} = \frac{54 \times 1000}{3600} \text{ m s}^{-1} = 15 \text{ m s}^{-1}$ 

$$72 \,\mathrm{km} \,\mathrm{h}^{-1} = \frac{72 \times 1000}{3600} \,\mathrm{m} \,\mathrm{s}^{-1} = 20 \,\mathrm{m} \,\mathrm{s}^{-1}$$

$$v^{2} = u^{2} + 2as$$

$$20^{2} = 15^{2} + 2 \times a \times 500$$

$$400 = 225 + 1000a$$

$$a = \frac{400 - 225}{1000} = 0.175$$

The acceleration of the train is  $0.175 \,\mathrm{m\,s^{-2}}$ .

5 **a** 
$$s = 48$$
,  $u = 4$ ,  $v = 16$ ,  $a = ?$ 

$$v^2 = u^2 + 2as$$

$$16^2 = 4^2 + 2 \times a \times 48$$

$$256 = 16 + 96a$$

$$a = \frac{256 - 16}{96} = 2.5$$

The acceleration of the particle is  $2.5\,m\,s^{-2}$ .

**b** 
$$u = 4$$
,  $v = 16$ ,  $a = 2.5$ ,  $t = ?$ 

$$v = u + at$$

$$16 = 4 + 2.5t$$

$$t = \frac{16 - 4}{2.5} = 4.8$$

The time taken to move from A to B is 4.8 s.

**6 a** 
$$a = 3$$
,  $s = 38$ ,  $t = 4$ ,  $u = ?$ 

$$s = ut + \frac{1}{2}at^2$$

$$38 = 4u + \frac{1}{2} \times 3 \times 4^2 = 4u + 24$$

$$u = \frac{38-24}{4} = 3.5$$

The initial velocity of the particle is  $3.5 \,\mathrm{m\,s^{-1}}$ .

**b** 
$$a = 3, t = 4, u = 3.5, v = ?$$

$$v = u + at = 3.5 + 3 \times 4 = 15.5$$

The final velocity of the particle is  $15.5 \,\mathrm{m\,s^{-1}}$ .

7 **a** 
$$u = 18$$
,  $v = 0$ ,  $a = -3$ ,  $s = ?$ 

$$v^2 = u^2 + 2as$$

$$0^2 = 18^2 + 2 \times (-3) \times s = 324 - 6s$$

$$s = \frac{324}{6} = 54$$

The distance travelled as the car decelerates is 54 m.

7 **b** 
$$u = 18$$
,  $v = 0$ ,  $a = -3$ ,  $t = ?$ 

$$v = u + at$$

$$0 = 18 - 3t$$

$$t = \frac{18}{3} = 6$$

The time taken for the car to decelerate is 6 s.

**8 a** 
$$u = 12$$
,  $v = 0$ ,  $a = -0.8$ ,  $s = ?$ 

$$v^2 = u^2 + 2as$$

$$0^2 = 12^2 + 2 \times (-0.8) \times s = 144 - 1.6s$$

$$s = \frac{144}{1.6} = 90$$

The distance moved by the stone is 90 m.

**b** Half the distance in **a** is 45 m.

$$u = 12$$
,  $a = -0.8$ ,  $s = 45$ ,  $v = ?$ 

$$v^2 = u^2 + 2as$$
  
=  $12^2 + 2 \times (-0.8) \times 45 = 144 - 72 = 72$ 

$$v = \sqrt{72} = 8.49$$
 (to 3 s.f.)

The speed of the stone is 8.49 m s<sup>-1</sup>.

**9 a** 
$$a = 2.5, u = 8, s = 40, t = ?$$

$$s = ut + \frac{1}{2}at^2$$

$$40 = 8t + 1.25t^2$$

$$0 = 1.25t^2 + 8t - 40$$

$$t = \frac{-(8) \pm \sqrt{(8)^2 - 4 \times (1.25) \times (-40)}}{2 \times (1.25)}$$

$$t = \frac{-8 + \sqrt{264}}{2.5} = 3.30 \text{ (to 3 s.f.)}$$

The time taken for the particle to move from O to A is 3.30 s.

**b** 
$$a = 2.5, u = 8, s = 40, v = ?$$

$$v^2 = u^2 + 2as$$

$$= 8^2 + 2 \times 2.5 \times 40 = 264$$

$$v = \sqrt{264} = 16.2$$
 (to 3 s.f.)

The speed of the particle at A is  $16.2 \,\mathrm{m \, s^{-1}}$ .

**10 a** 
$$a = -2$$
,  $s = 32$ ,  $u = 12$ ,  $t = ?$ 

$$s = ut + \frac{1}{2}at^2$$

$$32 = 12t - t^2$$

$$t^2 - 12t + 32 = (t - 4)(t - 8) = 0$$

So 
$$t = 4$$
 or  $t = 8$ .

**b** When 
$$t = 4$$
,

$$v = u + at = 12 - 2 \times 4 = 4$$

The velocity is  $4 \,\mathrm{m\,s^{-1}}$  in the direction  $\overrightarrow{AB}$ .

When 
$$t = 8$$
,

$$v = u + at = 12 - 2 \times 8 = -4$$

The velocity is  $4 \,\mathrm{m\,s^{-1}}$  in the direction  $\overrightarrow{BA}$ .

**11 a** 
$$a = -5$$
,  $u = 12$ ,  $s = 8$ ,  $t = ?$ 

$$s = ut + \frac{1}{2}at^2$$

$$8 = 12t - 2.5t^2$$

$$2.5t^2 - 12t + 8 = 0$$

$$5t^2 - 24t + 16 = (5t - 4)(t - 4) = 0$$

So 
$$t = 0.8$$
 or  $t = 4$ .

**b** 
$$a = -5$$
,  $u = 12$ ,  $s = -8$ ,  $v = ?$ 

$$v^{2} = u^{2} + 2as$$
$$= 12^{2} + 2 \times (-5) \times (-8)$$

$$=144+80=224$$

$$v = \sqrt{224} = -15.0$$
 (to 3 s.f.)

The velocity at x = -8 is  $-15.0 \,\mathrm{m \ s^{-1}}$ .

**12 a** 
$$a = -4$$
,  $u = 14$ ,  $s = 22.5$ ,  $t = ?$ 

$$s = ut + \frac{1}{2}at^2$$

$$22.5 = 14t - 2t^2$$

$$2t^2 - 14t + 22.5 = 0$$

$$4t^2 - 28t + 45 = (2t - 5)(2t - 9) = 0$$

The difference between the times is (4.5-2.5) s = 2 s.

**12 b** The maximum distance is reached when P reverses direction.

$$a = -4$$
,  $u = 14$ ,  $v = 0$ ,  $t = ?$ 

$$v = u + at$$

$$0 = 14 - 4t \implies t = \frac{14}{4} = 3.5$$

Find the displacement when t = 3.5.

$$s = ut + \frac{1}{2}at^2$$
  
= 14 \times 3.5 - 2 \times 3.5^2 = 24.5

Between t = 2.5 and t = 4.5 the particle moves back and forward.

Hence total distance travelled =  $2 \times (24.5 - 22.5)$  m = 4 m.

**13 a** From *B* to *C*, u = 14, v = 20, s = 300, a = ?

$$v^2 = u^2 + 2as$$

$$20^2 = 14^2 + 2 \times a \times 300$$

$$a = \frac{20^2 - 14^2}{600} = 0.34$$

The acceleration of the car is  $0.34 \,\mathrm{m \, s^{-2}}$ .

**b** From A to C, v = 20, s = 400, a = 0.34, u = ?

$$v^2 = u^2 + 2as$$

$$20^2 = u^2 + 2 \times 0.34 \times 400 = u^2 + 272$$

$$u^2 = 400 - 272 = 128$$

$$u = \pm \sqrt{128} = \pm 8\sqrt{2}$$

Assuming the car is not in reverse at A,  $u = +8\sqrt{2}$ 

$$v = u + at$$

$$20 = 8\sqrt{2} + 0.34t$$

$$t = \frac{20 - 8\sqrt{2}}{0.34} = 25.5$$
 (to 3 s.f.)

The time taken for the car to travel from A to C is 25.5 s.

**14 a** For P, a = 2, u = 4

$$s = ut + \frac{1}{2}at^{2}$$
$$= 4t + \frac{1}{2} \times 2t^{2} = 4t + t^{2}$$

The displacement of P is  $(4t + t^2)$  m.

For 
$$Q$$
,  $a = 3.6$ ,  $u = 3$ 

Q has been moving for (t-1) seconds since passing through A, so

$$s = u(t-1) + \frac{1}{2}a(t-1)^{2}$$
  
= 3(t-1) + 1.8(t-1)<sup>2</sup> = 1.8t<sup>2</sup> - 0.6t - 1.2

The displacement of Q is  $(1.8t^2 - 0.6t - 1.2)$  m.

**b** P and Q meet when  $s_P = s_Q$ , so, from **a**:

$$4t + t^2 = 1.8t^2 - 0.6t - 1.2$$

$$0.8t^2 - 4.6t - 1.2 = 0$$

Divide throughout by 0.2:

$$4t^2 - 23t - 6 = 0$$

$$(t-6)(4t+1) = 0$$

Rejecting a negative solution for time, t = 6.

**c** Substitute t = 6 into the equation for one of the displacements (here P):

$$s = 4t + t^2 = 4 \times 6 + 6^2 = 60$$

The distance of A from the point where the particles meet is 60 m.

15



**a** Let the velocity as the competitor passes point Q be  $v_Q$ 

For 
$$PQ$$
,  $s = 2.4$ ,  $t = 1$ ,  $v = v_Q$ 

$$s = vt - \frac{1}{2}at^{2}$$

$$2.4 = v_{Q} \times 1 - \frac{1}{2}(a \times 1^{2}) = v_{Q} - \frac{1}{2}a$$

$$v_{Q} = 2.4 + 0.5a$$

For 
$$QR$$
,  $s = 11.5$ ,  $t = 1.5$ ,  $u = v_Q$ 

$$s = ut + \frac{1}{2}at^{2}$$

$$11.5 = v_{o} \times 1.5 + \frac{1}{2}a \times 1.5^{2} = 1.5v_{o} + 1.125a$$

Substituting for  $v_Q$ :

$$11.5 = 1.5(2.4 + 0.5a) + 1.125a$$

$$= 3.6 + 0.75a + 1.125a$$

$$11.5 - 3.6 = (0.75 + 1.125)a$$

$$a = \frac{11.5 - 3.6}{0.75 + 1.125} = \frac{7.9}{1.875} = 4.21 \text{ (to 3 s.f.)}$$

The acceleration is  $4.21 \text{ km h}^{-2}$ .

$$4.21 \text{ km h}^{-2} = \frac{4.21 \times 1000}{3600 \times 3600} \text{ m s}^{-2} = 3.25 \times 10^{-4} \text{ m s}^{-2} \text{ (to 3 s.f.)}$$

So her acceleration is  $3.25 \times 10^{-4} \text{ m s}^{-2}$ .

**b** For PQ, s = 2.4, t = 1, a = 4.21, u = ?, using exact figures

$$s = ut + \frac{1}{2}at^{2}$$

$$2.4 = u \times 1 + \frac{1}{2} \times \frac{7.9}{1.875} \times 1^{2}$$

$$u = 0.293 \text{ (to 3 s.f.)}$$

$$0.293 \text{ km h}^{-1} = \frac{0.293 \times 1000}{3600} \text{ m s}^{-1} = 0.0815 \text{ m s}^{-1} \text{ (to 3 s.f.)}$$