Regression, correlation and hypothesis testing 1A

- **1 a** As noted at the beginning of Section 1.1, the equation Y = 1.2 + 0.4X can be rewritten as $\log y = 1.2 + 0.4 \log x$, which is of the form $\log y = \log a + n \log x$ and so $y = ax^n$.
 - **b** Y = 1.2 + 0.4X $\Rightarrow \log y = 1.2 + 0.4 \log x$ $\Rightarrow y = 10^{1.2 + 0.4 \log x} = 10^{1.2} \times 10^{0.4 \log x}$ $\Rightarrow y = 10^{1.2} \times 10^{\log x^{0.4}} = 10^{1.2} \times x^{0.4}$ Therefore $a = 10^{1.2} \approx 15.8$ (3 s.f.) and n = 0.4
- **2 a** As noted at the beginning of Section 1.1, the equation Y = 0.4 + 1.6X can be rewritten as $\log y = 0.4 + 1.6x$, which is of the form $\log y = \log k + x \log b$ and so $y = kb^x$.
 - **b** Y = 0.4 + 1.6X $\Rightarrow \log y = 0.4 + 1.6x$ $\Rightarrow y = 10^{0.4 + 1.6x} = 10^{0.4} \times 10^{1.6x}$ $\Rightarrow y = 10^{0.4} \times (10^{1.6})^{x}$ Therefore $k = 10^{0.4} \approx 2.51$ (3 s.f.) and $b = 10^{1.6} \approx 39.8$.
- 3 In the linear model Y = mX + c, where m and c are constants, $Y = \log y$ and $X = \log x$, so $\log y = m \log x + c$ Therefore $c = \log a$ The point (0, 172) lies on the line, so c = 172 and $\log a = 172 \Rightarrow a = 10^{172}$ (23, 109) lies on Y = mX + 172: 109 = 23m + 172 $\Rightarrow 23m = 109 - 172$ $\Rightarrow m = \frac{-63}{23} \approx -2.739$ (3 d.p.).

4 a

T	2	3	5	7	8	9
log P	1.86	1.93	2.10	2.25	2.33	2.41

- **b** The points seem to lie on a straight line with a positive gradient, which suggests a strong positive correlation.
- c Yes the variables show a linear relationship when $\log P$ is plotted against T.

d

If $\log P = mT + c$ then $P = 10^c (10^m)^T$. Measuring the gradient and intercept from the line of best fit with computer provides c = 1.69927 and m = 0.07901. These then give a = 50.0345502089 and b = 1.19949930315. Allow c between 1.65 and 1.8 so that a can be between 44.7 and 63.1. Since the gradient is small, it is better found using the original data points. Allow m between 0.077 and 0.082 so that b can be between 1.19 and 1.21.

4 e The approximate model is $P = 50.1 \times 1.2^T$ and so increasing T by 1 gives $50.1 \times 1.2^{T+1} = (50.1 \times 1.2^T) \times 1.2$

which means increasing T by 1 corresponds to an increase of the population by 20%. Note that T is recorded in months, and so for every month that passes, the population of moles increases by 20%.

5 a The equation t = a + bn is the equation of a straight line, but the data on the scatter diagram are not close to a straight line.

b
$$y = -0.301 + 0.6x$$

 $\Rightarrow \log t = -0.301 + 0.6 \log n$
 $\Rightarrow t = 10^{-0.301 + 0.6 \log n} = 10^{-0.301} \times 10^{0.6 \log n}$
 $\Rightarrow t = 10^{-0.301} \times 10^{\log n^{0.6}}$
 $\Rightarrow t = 10^{-0.301} \times n^{0.6}$
Therefore $a = 10^{-0.301} \approx 0.5$ (3 s.f.) and $k = 0.6$.

6
$$y = 1.31x - 0.41$$

 $\Rightarrow \log r = 1.31\log c - 0.41$
 $\Rightarrow r = 10^{1.31\log c - 0.41} = 10^{1.31\log c} \times 10^{-0.41}$
 $\Rightarrow r = 10^{\log c^{1.31}} \times 10^{-0.41} = c^{1.31} \times 10^{-0.41}$
Therefore $r = 0.389 \times c^{1.31}$ (3 s.f.).

7
$$y = 0.0023 + 1.8x$$

 $\Rightarrow \log m = 0.0023 + 1.8 \log h$
 $\Rightarrow m = 10^{0.0023 + 1.8 \log h} = 10^{0.0023} \times 10^{1.8 \log h}$
 $\Rightarrow m = 10^{0.0023} \times 10^{\log h^{1.8}} = 10^{0.0023} \times h^{1.8}$
Therefore $a = 10^{0.0023} \approx 1.0$ (3 s.f.) and $n = 1.8$.

8 a
$$y = 0.09 + 0.05x$$

 $\Rightarrow \log g = 0.09 + 0.05t$
 $\Rightarrow g = 10^{0.09 + 0.05t} = 10^{0.09} \times 10^{0.05t}$
 $\Rightarrow g = 10^{0.09} \times (10^{0.05})^{t}$
Therefore $a = 10^{0.09} \approx 1.23$ and $b \approx 1.12$ (3 s.f.)

- **b** If you increase the temperature by 1 $^{\circ}$ C, b is the increase in the growth rate g, i.e. b is the rate of change of g per degree.
- c 35 °C is outside of the range of data (extrapolation).

Challenge

a Construct a table of values for $\log T$ and $\log E$:

log T	0.0792	0.176	0.301	0.477	0.602	0.778	0.903
log E	0.954	0.74	0.477	0.146	0.0969	-0.398	-0.699

Plot the scatter diagram and draw a line of best fit:

log T, where T is temperature in celsius

The fact that the data are fitted by a straight line shows the validity of the relationship.

b The y-intercept of the line of best fit is 1.1 (to 2 s.f.).

So $\log a = 1.1$ (approximately)

 $a = 10^{1.1} = 12.58925... = 12.6$

From the graph, the gradient of the line of best fit is approximately -1.90 (to 3 s.f.), so b = -1.90.

c The model is of the form $\log E = \log a + b \log T$, but the expression $\log a + b \log T$ is not defined when T = 0 since $\log(0)$ is undefined (it approaches $-\infty$ as $T \to 0^+$).