Regression, correlation and hypothesis testing 1B

- 1 a r = 0.9 is a good approximation, since the points lie roughly, but not exactly, on a straight line. Remember that the value of r tells you how 'close' the data is to having a perfect positive or negative linear relationship.
 - **b** Clearly r is negative, and the data is not as close to being linear as in part **a**. r = -0.7 is therefore a good approximation.
 - c The data seems to have some negative correlation, but is rather 'random'. Because so many points would lie far away from a line of best fit, r = -0.3 is a good approximation.
- 2 a The product moment correlation coefficient gives the type (positive or negative) and strength of linear correlation between v and m.
 - **b** By inputting the (ordered) data into your calculator, r = 0.870 (to 3 s.f.).
- 3 a r = -0.854 (to 3 s.f.)
 - **b** There is a negative correlation. The relatively older young people took less time to reach the required level.
- 4 a The completed table should read:

Time, t	1	2	4	5	7
Atoms, n	231	41	17	7	2
log n	2.36	1.61	1.23	0.845	0.301

b
$$r = -0.980$$
 (to 3 s.f.)

- c There is an almost perfect negative correlation with the data in the form $\log n$ against t, which suggests an exponential decay curve. (This uses knowledge from the previous section.)
- **d** y = 2.487 0.320x $\Rightarrow \log n = 2.487 - 0.320t$ $\Rightarrow n = 10^{2.487 - 0.320t} = 10^{2.487} \times 10^{-0.320t}$ $\Rightarrow n = 10^{2.487} \times (10^{-0.320})^t$ Therefore $a = 10^{2.487} = 307$ (3 s.f.) and $b = 10^{-0.320} = 0.479$ (3 s.f.).

5 a

Width, w	3	4	6	8	11
Mass, m	23	40	80	147	265
log w	0.4771	0.6021	0.7782	0.9031	1.041
log m	1.362	1.602	1.903	2.167	2.423

b
$$r = 0.9996$$

c A graph of log w against log m is close to a straight line as the value of r is close to 1, therefore $m = kw^n$ is a good model for this data.

d
$$y = 0.464 + 1.88x$$

 $\Rightarrow \log m = 0.464 + 1.88 \log w$
 $\Rightarrow m = 10^{(0.464 + 1.88 \log w)}$
 $\Rightarrow m = 10^{0.464} \times w^{1.88}$
Therefore $k = 10^{0.464} = 2.91$ (3 s.f.) and $n = 1.88$ (3 s.f.).

6 a
$$r = -0.833$$
 (3 s.f.)

- **b** −0.833 is close to −1 so the data values show a strong to moderate negative correlation. A linear regression model is suitable for these data.
- 7 a 'tr' should be interpreted as a trace, which means a small amount.
 - **b** r = -0.473 (3 s.f.), treating 'tr' values as zero.
 - **c** The data show a weak negative correlation so a linear model may not be best; there may be other variables affecting the relationship or a different model might be a better fit.

Challenge

Take logs of the data in order to compute all of the required relationships:

x	3.1	5.6	7.1	8.6	9.4	10.7
у	3.2	4.8	5.7	6.5	6.9	7.6
$\log x$	0.491	0.748	0.851	0.934	0.973	1.03
$\log y$	0.505	0.681	0.756	0.813	0.839	0.881

Compute the PMCC for x and log y: r = 0.985 (3 s.f.).

Compute the PMCC for $\log x$ and $\log y$: r = 1.00 (3 s.f.).

Therefore the data indicate that $\log x$ and $\log y$ have a strong positive linear relationship. From the previous section, the data indicate a relationship of the form $y = kx^n$.