Regression, correlation and hypothesis testing 1C

- 1 a H_0 : $\rho = 0$, H_1 : $\rho \neq 0$, critical value = ± 0.3120 . Reject H_0 : there is reason to believe at the 5% level of significance that there is a correlation between the scores.
 - **b** H_0 : $\rho = 0$, H_1 : $\rho \neq 0$, critical value = ± 0.3665 . Accept H_0 : there is no evidence of correlation between the two scores at the 2% level of significance.
- **2 a** r = -0.960 (3 s.f.)
 - **b** H_0 : $\rho = 0$, H_1 : $\rho \neq 0$, critical value = ± 0.8745 . Reject H_0 : there is reason to believe at the 1% level of significance that there is a correlation between the scores.
- **3 a** The product moment correlation coefficient measures the type and strength of linear correlation between two variables.
 - **b** r = 0.935 (Get this value directly from your calculator.)

c

$$H_0: \rho = 0$$

 $H_1: \rho > 0$ 1-tail $\alpha = 0.05$
test statistic = 0.935
critical values = 0.4973
t.s. > c.v., so reject H_0 .

Conclude there is positive correlation between theoretical Biology and practical Biology marks — this implies that students who do well in theoretical Biology tests also tend to do well in practical Biology tests.

- **d** There is a probability of 0.05 that the null hypothesis is true.
- **4 a** r = 0.68556... so r = 0.686 (3 s.f.)

(NB. In the exam get this directly from your calculator. If you set up a table of results you are likely to run out of time.)

- **b** H_0 : $\rho = 0$, H_1 : $\rho > 0$, critical value = 0.6215. Reject H_0 : there is reason to believe that there is a linear correlation between the English and Mathematics marks.
- 5 r = 0.793

(NB. In the exam get this directly from your calculator. If you set up a table of results you are likely to run out of time.)

$$H_0: \rho = 0$$

$$H_1: \rho > 0$$
1-tail $\alpha = 0.01$

test statistic = 0.793

critical values = 0.8822

t.s. < c.v. so accept H_0 .

Conclude there is insufficient evidence at the 1% significance level to support the company's belief.

- 6 H_0 : $\rho = 0$, H_1 : $\rho < 0$, critical value = -0.4409. Accept H_0 . There is evidence that the researcher is incorrect to believe that there is negative correlation between the amount of solvent and the rate of the reaction.
- 7 The safari ranger's test.

Type: 1-tailed

 $H_0: \rho = 0$

 $H_1: \rho > 0$

Sample size: 10

r = 0.66

He has sufficient evidence to reject H_0 . The corresponding part of the table reads:

0.10	0.05	0.025	0.01	0.005	Sample size
0.4428	494	0.6319	0.715	0.7646	10

Therefore the least possible significance level for the ranger's test is 2.5%.

8 The information from the question is as follows:

Type: 1-tailed

 $H_0: \rho = 0$

 $H_1: \rho > 0$

Sample size: unknown

r = 0.715.

He has sufficient evidence to reject H_0 . Part of the corresponding column of the table reads:

PMCC at 0.025 level of significance	Sample size
0.9500	4
0.8783	5
0.8114	6
0.7545	7
0.7067	8

Therefore the smallest possible sample size is 8.

- **9 a** r = -0.846 (3 s.f.)
 - **b** H_0 : $\rho = 0$, H_1 : $\rho < 0$, critical value = -0.8822. Accept H_0 . There is evidence that the employee is incorrect to believe that there is a negative correlation between humidity and visibility.
- **10 a** This is a two-tailed test, so the scientist would need to halve the significance level.

b ± 0.4438